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Abstract
Problems in transit fare equity affect the daily commute of specific groups that depend mostly on public 

transportation. Previous studies showed that some routes present operational characteristics that increased 
the price charged to the users. To address this issue, a methodology to identify the routes that have fares 
much higher than expected, after considering operational parameters, is developed. This paper presents a 
methodology implemented to evaluate fare inequities in public transport networks. The case study is the bus 
public transport network in Costa Rica. The evaluation is performed using fare per kilometer as independent 
variable and operational variables, such as route length, monthly ridership and vehicle occupancy by using 
cluster analysis and Bayesian multilevel modelling. The results indicate that random coefficients models 
perform better than independent models for clustered data. Furthermore, the routes with higher differences 
between observed and estimated (i.e., expected) fares are the ones to be addressed first in individual audits, 
because these are the routes who charge higher operational costs into the fare, increasing inequity among 
the population.
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Resumen
Los problemas en la equidad de las tarifas de transporte público afectan el viaje diario de grupos 

específicos que dependen exclusivamente de éste. Estudios anteriores mostraron que algunas rutas presentan 
características operativas que incrementaron la tarifa cobrada a los usuarios. Para abordar este problema, 
se desarrolla una metodología para identificar las rutas que tienen tarifas mucho más altas de lo esperado, 
luego de considerar los parámetros operativos. Este artículo presenta la metodología implementada para 
evaluar las inequidades tarifarias en la red de transporte público. El caso de estudio es la red de transporte 
público de autobuses en Costa Rica. La evaluación se realiza utilizando la tarifa por kilómetro como variable 
independiente y variables operativas como la longitud de la ruta, el número de pasajeros mensuales y la 
ocupación de vehículos, mediante el uso de análisis de conglomerados y modelos bayesianos multinivel. Los 
resultados indican que los modelos de coeficientes aleatorios funcionan mejor que los modelos independientes 
para datos agrupados. Además, las rutas con mayores diferencias entre las tarifas observadas y estimadas 
(es decir, esperadas) son las que deben abordarse primero en las auditorías individuales, porque estas son 
las rutas que cobran mayores costos operativos en la tarifa, aumentando la inequidad entre la población.

Palabras clave:
Conglomerado, Evaluación, Modelado multinivel, Modelos Bayesianos, Tarifa.
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1. INTRODUCTION
User complaints regarding public transit fare must be addressed as a primary issue in 

transport policy. When these problems affect the daily commute of specific groups that depend 
mostly on public transit, response is needed from the competent authorities to prevent inequity. 
Fare inequities can be the result of flaws in the operational characteristics of the transit network, 
which affect the fare charged for the service.

Equity can be referred as the distribution of impacts (benefits and costs) and whether that 
distribution is considered fair and appropriate [1]. Equity in bus public transportation fares is 
difficult to accomplish when control and information are insufficient, particularly when the area 
of service is extensive and presents high operational route diversity. The bus public transportation 
network in Costa Rica is regulated nationwide and consists of nearly 750 routes not separated 
in regions or urban areas; therefore, due to the regulation structure, there is a considerable lack 
of information and control from the local authorities.

Previous studies in Costa Rica [2] – [4] showed that some routes present operational 
characteristics that affect the price charged to the users, increasing inequity for vulnerable 
population. 

The public transit system in Costa Rica is private-operated and the fare is stablished by 
the Public Service Regulator Authority. The fare model is complex and each private operator 
request revisions of the fare individually, which  has resulted in significant differences on the 
fare by kilometer between routes that are otherwise similar. To address this issue, a methodology 
to identify the routes that have fares much higher than expected, after considering operational 
parameters, is proposed. Solving these differences can contribute to increase equity and efficiency 
in the bus public transportation system.

Clearly, to compare the fare between different transit routes, these should have similar 
characteristics. Route grouping by similar characteristics, using existing information, allows 
the identification of outliers within groups. Multilevel or hierarchical modeling was chosen 
as the method for the group evaluation, since  it allows to control for the natural correlation 
existing between routes of the same group [5] while also taking advantage of the nested data 
structure to improve model estimation [6]. More importantly, non-hierarchical models are 
usually inappropriate for hierarchical data because, with few parameters, they  generally cannot 
fit accurately large datasets as the one use in this study, whereas with many parameters, they 
tend to overfit the data [5].

To identify inequities in the transit routes, the difference between the observed fare per 
kilometer and what is expected in similar routes (after controlling for several operational 
characteristics) is proposed. The routes that have higher differences between observed and 
expected fare per kilometer are the ones that charge higher operational costs into the fare, even 
after controlling for different operational characteristics. Each category or group sets its own 
value for comparison, according to the estimates. The larger outliers within each group are the 
ones to be addressed first as they impose the most expensive fares after controlling for operational 
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characteristics. This procedure is analogous to the one use to identify sites with excess crash 
frequency in highway safety [7]. As in the case of highway safety, the routes with the largest 
fare excess are the ones expected to have the highest probability of reduction.

A Bayesian approach is chosen because it provides the flexibility to model complex correlation 
structures as the ones included in multilevel models. Further, the Bayesian approach allows to 
easily compare different modeling approaches within the same framework. Bayesian models 
have been gaining popularity in several fields as the approach of choice when modeling multiple 
levels and incorporating random effects or complicated dependence structures [8], [9]. 

The purpose of this study is to propose a method to identify transit routes with significantly 
higher fares compared to similar routes by applying Bayesian modeling and creating different 
route groups or clusters. These differences could represent inequities or inefficiencies in the 
transit system that should be studied further.

This paper is organized as follows. First, a literature review regarding equity, multilevel 
modeling, and cluster analysis is presented. Then, the methodology used for the research is 
described, followed by the presentation of the data, which includes information about the 
background of the bus transit network in Costa Rica, the group creation and the parameters 
used for the models. Finally, the results, which conduct a comparison of goodness-of-fit and 
estimates between generalized linear models and random coefficients models, are presented and 
discussed; followed by the conclusions and recommendations for future research. 

2. LITERATURE REVIEW
Equity has been widely explored regarding transit policies. It has important political implica-

tions, and it needs to be considered so that the whole transportation system [10] and the individual 
bus system revenue can be improved [11]. The proposed methodology doesn’t involve the formu-
lation of policies but seeks to identify the routes in which equity can be achieved while improving 
efficiency [12].

The proposed model estimates the fare-per-kilometer variable with covariates such as ridership, 
vehicle occupancy and route length. Other studies have also considered the effects of operational 
characteristics of the bus public network on fare structure. Ling [13] estimated, given the fares and 
ridership in the flat fare system, how the total ridership, operator revenue, passenger-km, and con-
sumer surplus would change if the fare structure changes to fare differential system. Fairness and 
equity, increased revenue and increased ridership were identified as some reasons for promoting 
differentiated fares.

More recently, Liu et al [14] analyzed the effects of differential fare strategies on social wel-
fare. The authors found that all differential fare strategies produced higher social welfare than the 
flat fare. Similarly, Tang et al [15] proposed an optimization of bus line fares using elastic demand. 
The authors maximize social welfare by proposing several operational strategies. The proposed 
methodology seeks to improve these and other aspects by identifying operational parameters that 
contribute to inefficiency within groups.
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In order to avoid the biases due to analyzing systems with different sizes and operating 
environments, Karlaftis and McCarthy [16] used cluster analysis to classify 256 transit systems 
into homogenous groups. The 742 routes used in this analysis required a similar grouping in order 
to improve model performance. For regression of clustered data, random coefficients models are 
usually considered, as they control for between-cluster variation [17]. 

As mentioned above, the route classification allows a multilevel approach by analyzing two 
levels of data: route-level and category-level. Multilevel modeling has been applied to transporta-
tion in different areas of study, but none have explored the effect of operational parameters in fare 
estimation. Cervero and Kang [18] analyzed the impact in land-use changes and land values due to 
the upgrade of BRT services in Seoul Korea. The analysis was performed with multilevel modeling, 
in which the first level corresponded to the parcels and the second level corresponded to the neigh-
borhood groups. Similar individual and neighborhood levels were used by Yavuz et al [19] and Paez 
and Mercado [20]. Yavuz et al [19] performed a multilevel approach to analyze how perceptions of 
bus and train safety in Chicago, Illinois vary as a function of person-level characteristics  and nei-
ghborhood-level characteristics. Paez and Mercado [21] determined individual and neighborhood 
characteristics that affected the distance traveled and the variability of these factors on each mode 
type using multilevel analysis. Wang et al. [21] analyzed a Demand Responsive Transport (DRT) 
System in Manchester; they explored the relationship between a range of socioeconomic variables 
and service area factors and the demand for DRT using a linear multilevel model. In this model the 
first level was the census track and the second level the service area. 

The studies mentioned above applied multilevel modeling to population or land distribu-
tion parameters as parcels, neighborhoods, census tracks or service areas. This research applied 
multilevel modelling to the transportation system itself, in which the reference level is the whole 
network, while subnetworks represent the subsequent levels. Ma and Lebacque [22] applied mul-
tilevel modeling using similar reference and subsequent levels to study system optimal routing for 
public transit systems.

Generalized linear models and random coefficients models have been applied to clustered 
observations. Similar approaches were used by Laird and Ware [23] for longitudinal data and by 
Aguero-Valverde and Jovanis [24] for crash frequency models. Laird and Ware [23] explored a 
general family of two-stage random-effects models in two examples from an epidemiological study 
of the health effects of air pollution. Aguero-Valverde and Jovanis [24] implemented multilevel 
models in road segments of different functional types by using a full Bayes hierarchical approach 
to analyze spatial correlation in road crash models in Pennsylvania and Washington. The research 
concluded that random effects significantly improved the precision, particularly for small sample 
sizes and low sample means.

3. METHODS
The models are estimated using a full Bayes hierarchical approach in order to estimate not only 

the parameters but also the estimated excess fare of each transit route and its statistical significance. 
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In Bayesian inference, the posterior distribution of the parameters of interest is estimated as the 
product of the prior distribution times the likelihood of the model up to a constant, based on the 
Bayes Theorem. For more details on Bayesian inference, interested readers can refer to Gelman et 
al [5], Congdon [6] or Koch [25].  

At the first level of hierarchy, the logarithm of the fare per kilometer is assumed normally 
distributed:

ln(FKMik)~N(μik , )  (1)

where FKMik is the fare per kilometer for route i of group k, μik is the expected value (i.e. the mean) 
for route i of group k and  is the precision for the normal distribution (i.e. the inverse of the va-
riance). 

For this model, the second level of the hierarchy defines the mean:

μik= 0k+ 1k * ln(lenik )+ 2k * ln(ridik )+ 3k * ln(vocik )  (2)

where 0k is the constant term for route group k, 1k is the coefficient for length  for route group k,  
lenik is the length of route i of group k, 2k is the coefficient for monthly ridership for route group 
k, ridik is the average monthly number of passengers of route i for group k, 3k is the coefficient for 
vehicle occupancy for route group k, vocik is the average vehicle occupancy for route i of group k.

This formulation is equivalent to a linear model:

ln(FKMik)= 0k+ 1k * ln(lenik)+ 2k * ln(ridik)+ 3k * ln(vocik)+ei  (3)

where the error term is normally distributed:

ei~N(0, ).  (4)

The hyper-prior for  is supposed gamma:

~gamma(0.01,0.01).  (5)

The selection of the prior distribution for the betas differentiates between and independent 
and correlated model. The prior distributions in the case of the independent coefficient model are:

jk~N(0,0.0001),    j=0,1,2,3 and k=1,..,30.  (6)

The coefficients for each group of routes are completely independent and the model is almost 
equivalent to estimate a single model for each group. The only “shared” information among groups 
is the random variability between transit routes, since they share the same τ as shown in (5).

For the random coefficients model (i.e. correlated model), the coefficients change for each route 
group, but belong to the same normal distribution:

jk~N(0, j ),    j=0,1,2,3 and k=1,..,30.  (7)
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The  hyper-prior for each j is supposed gamma:

j~gamma(0.01,0.01).  (8)

This correlated or random coefficients model allows for “shared” information among route 
groups through the precision parameter, which in turn, improves parameter estimation.

Finally, to identify inequities and inefficiencies in the transit routes the difference between the ob-
served fare per kilometer and what is expected based on similar routes (i.e. belonging to the same 
group and controlling for the covariates) is estimated:

Δik= FKMik- exp(μik)  (9)

Clearly , the highest deltas express the highest excess or inequities between transit routes that 
should, in theory, have very similar fares per kilometer. Here, another of the advantages of Fully 
Bayesian models is evident since the full posterior distribution of the deltas is known, which allows 
to explore the statistical significance of the excess fare.

Traditionally, two different goodness-of-fit measures are used for model comparison in a Baye-
sian framework: posterior mean deviance ( ) and Deviance Information Criterion (DIC). The pos-
terior mean deviance can be seen as a Bayesian measure of fit or ‘adequacy’. On the other hand, 
the deviance Information Criterion was proposed by Spiegelhalter et al [26] to account model com-
plexity. The DIC is considered the Bayesian equivalent of the Akaike Information Criterion (AIC). 
DIC is defined as an estimate of fit plus twice the effective number of parameters.

DIC= D( )+2pD= +pD  (10)

where D( ) is the deviance evaluated at , the posterior means of the parameters of interest, pD is 
the effective number of parameters in the model, and  is the posterior mean of the deviance sta-
tistic D( ). As with AIC, models with lower DIC values are preferred.

4. DATA
The data for the study was provided by ARESEP (Regulatory Authority of Public Services). 

Several details about public transport background in Costa Rica are needed to have a better unders-
tanding of the methods applied to the dataset of the bus routes. Urban development in Costa Rica is 
concentrated in the Central Valley, the natural barriers serve as borders for the Great Metropolitan 
Area (GAM), which main city is San José, the capital. 

In terms of transport network, cities in Costa Rica can be hierarchized in four categories: 

1. San José

2. Main districts of the provinces within the GAM: Heredia, Cartago and Alajuela

3. Main districts of the main cities outside the GAM

4. Main districts of the secondary cities outside the GAM
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The transport network revolves around the capital; San José is the distribution center for all 
the country’s regions, with about 33 %  of the total routes connecting San José directly with other 
cities, within or outside the GAM. Each of the cities mentioned above present their own transport 
system, this represents about 65 %  of the routes of the country. The last 2 %  is composed of the 
routes that communicate main districts between themselves, without stopping in San José. As noted, 
the transport system in Costa Rica presents substantial size and operational differences according 
to its location. 

To perform the analysis adequately, 742 bus public transportation routes were classified in 
30 groups according to four main operation characteristics: location, route structure, terrain and 
length. Location was the main parameter for the classification. The other three parameters depend 
on the route configuration. For route structure, according to Molinero and Sánchez [27] and Vuchic 
[28], routes were classified in radial or circular configuration. Almost 95 %  of the routes in Costa 
Rica are radial. The terrain was classified according to the Central American Manual for Geome-
tric Design of Highways and Streets [29] in Level – Rolling (0 % to 10 % ) and Rolling – Moun-
tainous (> 10% ). Last, the routes were classified by length, in order to differentiate the ones that 
operate in the inner city, from the ones that reach the outer city or travel between cities. They were 
classified in short (0 km to 20 km), medium (20 km to 40 km), long (40 km to 125 km) and very 
long (more than 125 km).

Fig.1 shows the summary of the classification method described above. Location is the first 
parameter for grouping the routes, then each unit is assorted to a different category according to 
its characteristics from the subsequent three levels. For example, one of the final groups consists 
of the units of San José, with radial structure, level – rolling terrain and short length. Not every 
possible combination was defined as a group, each category was evaluated by size and relevance 
to decrease the total number of groups.

The classification parameters returned 30 categories from the 742 routes analyzed, some groups 
consist of less than 10 routes, in contrast with groups with more than 50 routes per category. The-
refore, models such as random coefficients models, that controls for between-cluster variation, 
must be considered [17]. For more details about the classification of bus routes interested readers 
can check [4].

Once the categories were established, the variable fare per kilometer was selected to model 
inequities within each group. As a result of exploratory analysis and linear regression models, three 
independent variables were included in the model: 

1. Route length: route length measured in kilometers.

2. Monthly ridership: total average passengers per month for each route.

3. Vehicle occupancy: monthly ridership divided by the total average number of trips per   
 month.
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Fig.1. Route classification process

Several other variables can be included in the models to explain the differences in fare per kilo-
meter. In the case of this study, these three operation variables were used as they were available for 
almost all the bus transit routes in Costa Rica. In addition to the variables used in the categoriza-
tion of the bus routes, these variables should explain most of the variability in the data. Additional 
variability in the data should be represented by the excess fare per kilometer or delta, previously 
introduced in (9). Further analysis of deltas will reflect on the routes with the highest operational 
costs per user. 

From the summary statistics in Table 1, it is observed that monthly ridership has high disper-
sion, since the standard deviations are higher than the mean frequencies for many of the groups and 
the total routes. The bus route length also presented high dispersion on the aggregated statistics but 
the dispersion inside each group is significantly reduced. This was expected since the route length 
was one of the criteria used to create the groups. The fare per kilometer and the vehicle occupancy 
presented small variance both at the aggregated level and at the group level. 

TABLE 1
SUMMARY STATISTICS OF THE VARIABLES USED IN THE MODEL

Group Number 
of routes

Fare per kilometer ( /km) route length (km) Montly ridership Vehicle Occupancy
mean Std. Dev. mean Std. Dev. mean Std. Dev. mean Std. Dev.

1 5 25.47 11.52 9.25 2.61 142259 64189 41.78 18.51
2 90 20.38 5.62 13.86 3.44 117777 85528 53.19 16.36
3 70 14.07 2.52 26.52 9.57 118206 111803 67.10 18.80
4 17 23.13 8.61 12.43 5.89 25799 21750 32.53 10.87
5 12 24.28 5.45 12.85 3.49 38704 47842 52.25 11.52
6 14 19.88 6.91 36.15 16.55 30285 39705 65.14 20.64
7 58 23.61 9.57 12.05 3.99 61655 74363 48.31 18.62
8 33 13.88 3.87 32.19 11.24 44904 31212 69.62 20.27
9 17 27.62 12.04 14.30 9.20 23253 13090 45.28 16.68
10 9 21.96 7.16 13.88 4.48 42757 25989 39.70 12.10
11 18 13.02 2.82 45.76 10.90 115404 145771 71.54 16.85
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12 14 19.54 5.84 70.64 14.79 33413 43441 67.50 14.54
13 17 11.07 1.43 366.66 226.71 15515 20447 68.36 21.17
14 43 10.37 3.71 325.13 151.63 15877 20653 66.05 22.75
15 22 11.33 3.11 163.33 80.24 17259 19551 68.01 25.27
16 9 38.04 14.00 8.59 3.88 28537 23044 33.24 16.43
17 18 33.48 15.80 10.98 4.16 16231 7832 35.59 14.44
18 19 21.96 6.44 27.49 5.28 11626 8234 59.05 17.52
19 15 18.72 6.44 63.12 14.96 15908 21831 69.79 47.64
20 20 24.66 10.58 13.08 4.35 28111 27769 39.72 15.21
21 28 15.52 3.45 29.61 6.55 26294 26560 50.01 24.07
22 39 13.44 3.80 70.59 17.59 14257 22573 71.57 20.42
23 14 9.95 2.96 180.74 81.79 11915 12030 59.28 16.18
24 22 29.53 10.02 13.23 3.52 15072 11445 50.23 27.80
25 25 18.38 7.68 25.13 6.05 14913 17236 44.72 15.14
26 19 15.34 7.42 67.75 26.50 4444 4441 56.91 17.48
27 12 26.11 10.25 11.71 3.69 19975 8077 50.15 48.37
28 17 18.83 11.39 31.40 5.49 14171 16371 60.97 29.94
29 43 14.90 7.28 82.73 46.07 9261 7553 57.98 18.33
30 3 17.99 1.85 61.00 30.99 7747 4227 55.60 18.64

TOTAL 742 18.54 9.33 62.68 105.02 47631 72206 56.97 23.58

5. RESULTS
Models were estimated using the open source software OpenBUGS [30]. OpenBUGS is a popu-

lar software used for Full Bayesian estimation in fields ranging from transportation to medicine. 
For more details on Bayesian estimation using OpenBUGS interested readers can check Lawson 
et al [31], Congdon [32] or Ntzoufras [33].

For the models, 1.000 iterations were discarded as burn-in. The following 175.000 iterations 
were used to obtain summary statistics of the posterior distribution of parameters. Convergence was 
assessed by visual inspection of the Markov chains for the parameters. Furthermore, the number 
of iterations was selected so that the Monte Carlo error for each parameter in the model would be 
less than 5 %  of the value of the standard deviation of that parameter.

5.1  Independent and correlated or random parameters models
Table 2 presents the estimates   and the standard deviation for each coefficient for the inde-

pendent and correlated random coefficients model. The main interest is to determine which model 
performs better in terms of goodness-of-fit and coefficient significance.

The goodness-of-fit measures commonly used in full Bayesian statistics are presented in the 
table: the posterior mean of the deviance and the deviance information criterion (DIC)[26]. The 
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deviance is estimated in the same way for frequentist and Bayesian statistics, while the DIC is the 
Bayesian equivalent of the Akaike information criterion. As in the case of their frequentist coun-
terparts, the deviance and the DIC quantify the relative goodness-of-fit of the models; therefore, 
they are useful for comparing models. 

Regarding the results in Table 2, the estimates, in both the independent and the correlated 
models, corresponding to the independent variables have a negative effect over the fare per kilo-
meter. As expected, when the route length ( 1), average occupancy ( 2) and monthly ridership  
( 3) increase, the fare per kilometer decreases. According to (3) , the coefficients of the variables 
correspond to the constant elasticities since they relate the natural logarithm of the fare per kilo-
meter with the natural logarithm of the covariates. Therefore, it is observed that route length has 
higher influence over the fare per kilometer than any other independent variable, since in general 
it has the highest coefficents.

Concerning the estimates significance, both models present a similar behavior. The random 
coefficients model performs slightly better with the route length estimates, which, as mentioned 
previously, have more influence in the general model. On the other hand, 2 and 3, are significant 
just in one more group in the independent model compared to the correlated or random parameters 
model.

The main difference between models can be observed at the estimates for the mean and stan-
dard deviation. The random coefficients model return values that are closer to the mean, as they 
consider the whole sample for modelling and not just each group sample. For the same reason, the 
standard deviation is also reduced, resulting in a better estimation of the fare per kilometer. In terms 
of the goodness-of-fit measures, the DIC for the random parameters model is 22 points lower, which 
means that the model is s significantly better [26]. 

From Table 2 it is observed that the estimates for groups 13, 23 and 30 are not significant. Even 
though, these categories have a small sample size (17, 14 and 3 respectively) the groups 1, 10 and 
15 have also small sample sizes (5, 9, and 22 respectively) but they return one or more significant 
variables. The random coefficients model, as mentioned before, has a stronger influence in reducing 
the small sample groups mean and standard deviation. 

The estimated kernel density of the posterior distribution of the parameters further shows the 
benefits of random coefficients models over univariate models. The estimated density of 0 for the 
groups with the largest and the smallest sample size are presented in Fig. 2.  The density in group 
2, with a sample size of 90, shows almost no changes between the univariate and the multivariate 
model. On the other hand, the density in Group 30, with a sample size of 3, shows how by conside-
ring the population and not just the within-group variation sample, the multivariate model improves 
the model prediction compared to the univariate model, particularly for groups with small samples. 
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TABLE 2
INDEPENDENT AND RANDOM COEFFICIENTS MODEL ESTIMATES 

Group

Independent Random Coefficients Model

Estimate (standard deviation)

0 1 2 3 0 1 2 3

1 10.650(4.067) -0.689(0.920) -0.244(0.603) -0.436(0.635) 5.757(1.238) -0.704(0.347) -0.117(0.165) -0.056(0.095)  

2 5.110(0.422) -0.704(0.111) -0.045(0.100) -0.011(0.036) 5.008(0.412) -0.676(0.106) -0.040(0.084) -0.010(0.033)

3 4.794(0.583) -0.323(0.126) -0.266(0.131) -0.001(0.036) 4.469(0.563) -0.315(0.123) -0.164(0.107) -0.012(0.032)

4 4.169(0.898) -0.702(0.171) 0.031(0.209) 0.049(0.097) 4.229(0.712) -0.638(0.143) 0.005(0.128) 0.037(0.065)

5 5.638(1.255) -0.279(0.310) -0.288(0.456) -0.064(0.087) 4.689(0.817) -0.282(0.251) -0.060(0.165) -0.059(0.058)

6 6.600(1.152) -0.402(0.234) -0.283(0.228) -0.116(0.085) 5.451(0.980) -0.286(0.188) -0.165(0.141) -0.089(0.057)

7 5.398(0.381) -0.680(0.110) -0.076(0.092) -0.034(0.029) 5.276(0.370) -0.658(0.106) -0.066(0.081) -0.031(0.027)

8 4.473(0.732) -0.233(0.145) -0.235(0.124) -0.010(0.040) 4.106(0.687) -0.217(0.139) -0.149(0.103) -0.015(0.036)

9 4.043(1.313) -0.602(0.119) 0.200(0.221) -0.006(0.083) 4.332(0.860) -0.545(0.112) 0.081(0.137) -0.005(0.061)

10 5.824(1.569) -0.879(0.350) 0.112(0.586) -0.089(0.243) 5.092(0.963) -0.683(0.253) -0.022(0.166) -0.021(0.085)

11 5.958(2.631) -0.726(0.285) -0.103(0.438) -0.022(0.060) 4.390(1.366) -0.514(0.241) 0.002(0.161) 0.009(0.038)

12 6.805(1.731) -0.229(0.400) -0.394(0.341) -0.131(0.057) 5.029(1.363) -0.161(0.291) -0.100(0.161) -0.105(0.048)

13 1.664(1.391) 0.055(0.152) 0.029(0.188) 0.033(0.089) 1.825(1.110) 0.045(0.124) 0.024(0.123) 0.024(0.061)

14 4.378(0.801) -0.21(0.085) -0.222(0.126) 0.002(0.040) 3.980(0.740) -0.193(0.083) -0.137(0.103) -0.004(0.036)

15 3.184(1.084) -0.043(0.122) 0.039(0.188) -0.081(0.064) 2.983(0.906) -0.031(0.118) 0.010(0.125) -0.052(0.052)

16 3.554(1.780) -0.529(0.322) -0.200(0.286) 0.177(0.197) 4.425(0.910) -0.577(0.207) -0.049(0.133) 0.049(0.082)

17 8.172(1.533) -0.816(0.168) -0.109(0.179) -0.259(0.138) 5.841(0.943) -0.688(0.148) -0.067(0.125) -0.063(0.08)

18 7.456(1.443) -0.491(0.336) -0.121(0.226) -0.253(0.100) 5.470(1.150) -0.272(0.271) -0.096(0.138) -0.125(0.071)

19 4.855(1.588) -0.189(0.300) 0.042(0.167) -0.156(0.047) 4.267(1.231) -0.109(0.249) 0.032(0.118) -0.122(0.043)

20 5.428(1.160) -0.806(0.150) -0.137(0.180) 0.022(0.069) 4.912(0.821) -0.739(0.145) -0.064(0.121) 0.031(0.053)

21 4.640(0.996) -0.386(0.245) 0.041(0.094) -0.080(0.052) 4.108(0.886) -0.277(0.219) 0.022(0.081) -0.056(0.044)

22 5.619(0.951) -0.433(0.171) -0.190(0.130) -0.049(0.039) 4.947(0.853) -0.358(0.161) -0.112(0.105) -0.046(0.035)

23 3.346(2.103) -0.128(0.257) -0.147(0.279) 0.018(0.061) 2.530(1.450) -0.057(0.216) -0.026(0.147) 0.014(0.051)

24 4.177(0.752) -0.510(0.202) 0.084(0.118) 0.014(0.064) 4.137(0.653) -0.424(0.184) 0.058(0.096) 0.005(0.053)

25 6.351(0.759) -0.794(0.187) -0.249(0.179) -0.008(0.048) 5.710(0.709) -0.705(0.176) -0.129(0.126) -0.018(0.039)

26 12.28(1.316) -0.989(0.189) -0.984(0.211) -0.205(0.090) 8.601(1.134) -0.838(0.175) -0.410(0.185) -0.112(0.069)

27 7.539(2.050) -0.329(0.337) -0.174(0.121) -0.300(0.243) 5.101(0.936) -0.431(0.255) -0.141(0.099) -0.039(0.091)

28 6.077(1.546) -0.044(0.370) -0.068(0.177) -0.320(0.078) 4.917(1.223) 0.052(0.294) -0.116(0.124) -0.207(0.065)

29 7.492(0.731) -0.585(0.095) -0.218(0.132) -0.172(0.055) 6.687(0.665) -0.564(0.093) -0.141(0.108) -0.126(0.049)

30 -88.810(82.580) 7.215(6.509) 19.820(18.230) -1.726(1.755) 2.319(1.495) 0.063(0.204) 0.020(0.177) 0.027(0.090)

Goodness-of-fit measures

 DIC pD DIC pD

123 2.79 243.3 120.2 131.4 41.42 221.4 89.98

Note: Gray cells indicate significance at 97.5% level.
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The estimated kernel density of the posterior distribution of the parameters further shows the 
benefits of random coefficients models over univariate models. The estimated density of 0 for the 
groups with the largest and the smallest sample size are presented in Fig. 2. The density in group  
2, with a sample size of 90, shows almost no changes between the univariate and the multivariate 
model. On the other hand, the density in Group 30, with a sample size of 3, shows how by conside-
ring the population and not just the within-group variation sample, the multivariate model improves 
the model prediction compared to the univariate model, particularly for groups with small samples.  

Fig. 2. Deltas ranking comparison between the univariate model and the multivariate model

5.2  Significant Deltas Obtained from the Independent and Random Coefficients Models 
Bayesian modeling allows to estimate the significance of the deltas obtained after running both 

models. Table 3 shows the 5 %  of the higher deltas obtained for all the population in the random 
coefficients model, and as seen, the independent model has seven not significant values, while 
the correlated model has three. A positive delta indicates a value of fare per kilometer higher than 
expected, these are the routes that have to be revised first in order to set an adequate fare in terms 
of operation, equity and the category in which the route is included.

The deltas are ranked from high to low and compared to the ranking obtained in the univariate 
model. Coincidentally, the highest 5 %  deltas in the random parameters model are the same as in 
the independent model, though they are not in the same order of hierarchy. The delta ranked in the 
4th position in the random parameters model serves as an example as how not considering the sig-
nificance can mislead the interpretation of the results.

Once the outliers are identified, it is necessary to perform individual analysis to each route to 
identify which are the operational characteristics that have price implications for the served popula-
tion. This method is intended to be used by the competent authorities as a first approach to perform 
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a diagnostic of the whole network, so that, the resources for specific audits can be focused to solve 
the most problematic routes in terms of equity and efficiency.

Ridership and origin-destination studies can be performed to determine the necessity of impro-
ving the route’s design in terms of structure, configuration, frequency or schedule. The change of 
this parameter will imply a variation in the fare charged for the service and therefore modify the 
ridership and average occupancy. The route improvement must be accompanied by model optimi-
zation, seeking to conform categories with more homogeneous behavior.

Fig. 3 makes a comparison between both model rankings around the unitary diagonal, showing 
that the models present slight differences in the deltas ranking, as a considerable number of points 
are close to the diagonal; nevertheless, several values, specifically those of lower ranking for the 
univariate model are far from the unitary reference.

Fig. 3. Deltas ranking comparison between the univariate model and the multivariate model

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
• Univariate and multivariate models were estimated using a full Bayes hierarchical approach. 

The models estimated the effect of route length, average occupancy and monthly ridership in 
fare per kilometer, for 742 clustered routes of the bus network in Costa Rica. The estimates in 
both models have a negative effect over the fare per kilometer. An increase of the independent 
variables leads to a decrease in the fare per kilometer, being the route length the parameter 
with the higher influence overall. 

• The random coefficients (correlated) model performed better than the univariate model in 
terms of goodness-of-fit statistics; the DIC for the multivariate model was 22 points lower, 
which means that the multivariate model is significantly better. The random coefficients 
model estimates usually returned smaller standard deviations, because it considers the whole 
sample for modelling and not just each group sample, resulting in a better estimation of the 
fare per kilometer.
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TABLE 3
TOP 5 % OF THE DELTAS OBTAINED FROM THE INDEPENDENT 

Independent Random Coefficient

ID Group Ranking Estimate sd Ranking Estimate Sd

delta[680] 28 1 27.63 2.49 1 29.99 1.94

delta[230] 7 2 25.00 7.04 2 27.05 6.33

delta[602] 24 3 21.29 3.00 3 21.21 2.67

delta[449] 17 11 14.35 12.32 4 20.32 10.96

delta[603] 24 4 20.69 2.64 5 20.28 2.34

delta[397] 14 5 19.43 0.93 6 19.63 0.87

delta[675] 27 8 15.68 3.65 7 18.61 2.08

delta[306] 9 6 16.96 6.57 8 18.04 6.30

delta[698] 29 7 16.88 1.10 9 17.55 0.95

delta[450] 17 18 12.06 4.21 10 16.44 2.70

delta[682] 28 9 15.52 1.73 11 15.69 1.56

delta[697] 29 17 12.07 2.15 12 14.21 1.80

delta[617] 24 14 12.36 4.42 13 14.06 3.83

delta[649] 26 10 15.45 1.26 14 14.05 1.32

delta[681] 28 27 9.068 4.21 15 13.81 3.06

delta[699] 29 12 12.74 1.04 16 13.15 0.92

delta[624] 25 13 12.42 1.42 17 12.66 1.22

delta[604] 24 15 12.25 2.14 18 12.22 1.99

delta[521] 21 19 11.72 1.67 19 11.93 1.56

delta[651] 26 32 6.896 2.67 20 11.47 1.81

delta[467] 18 22 10.51 2.55 21 11.34 2.04

delta[441] 16 20 10.97 3.51 22 10.65 3.36

delta[2] 1 36 2.653 6.66 23 10.52 3.76

delta[440] 16 37 -2.51 18.15 24 10.4 11.16

delta[207] 6 35 2.759 8.46 25 10.25 5.67

delta[452] 17 26 9.509 2.81 26 10.13 2.46

delta[233] 7 23 9.916 1.17 27 10.08 1.13

delta[345] 12 21 10.66 1.32 28 10.07 1.33

delta[701] 29 30 7.864 2.19 29 9.943 1.77

delta[702] 29 24 9.729 1.49 30 9.48 1.44

delta[670] 27 16 12.23 4.36 31 9.346 2.98

delta[605] 24 25 9.687 2.89 32 9.092 2.53

delta[668] 27 33 5.277 4.22 33 8.851 3.23

delta[210] 7 29 8.671 0.85 34 8.544 0.86

delta[703] 29 31 7.849 1.03 35 8.355 0.99

delta[488] 19 28 8.764 1.39 36 8.329 1.32

delta[650] 26 34 3.45 2.45 37 8.235 1.85

Note: Gray cells indicate significance at 97.5% level.
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• The classification of the data in groups enables a better prediction of the within-group mean, 
standard deviation and outliers. Outliers allow to identify routes that behave significantly diffe-
rent from those in which they are grouped; therefore, individual analyses should be perfor-
med to determine the operation parameters that need to be adjusted to improve performance. 
Positive deltas, that show the difference between the observed values and the estimated ones, 
indicate a value of fare per kilometer higher than expected, hence, these are the routes that 
should be revised first in order to set an adequate fare in terms of efficiency and equity. 

• Even though fare is just one of many parameters in a transit system, it has a direct effect 
on the users in terms of equity, and as stated by Ling [13], improving the fare structure can 
result in increasing ridership and revenue. With better data availability, similar analyses can 
be conducted in different bus transit networks as a tool for evaluating the efficiency of each 
system. Other parameters can be introduced as independent variables for determining speci-
fic efficiency aspects.
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