ISSN 1409-2441

lngemema

DRevista de la Universidad de Costa Rica
Enero/Diciembre 1999 VOLUMEN 9 Nos. 1y 2

Accion de control
FLC

Salida

PLANTA
—»

" Seleccion de control fino
error < Banda de error
@
Variable controldds g ga3

.:. al . et = &%contml fino
®e ; ;

\

1 44,

Region de coitmlg

_ Banda de
error

T = Tiempo

INGENIERIA

Revista Semestral de la Universidad de Costa Rica
Volumen 9, Enero/Diciembre 1999 Nimeros 1y 2

DIRECTOR
Rodolfo Herrera J.
CONSEJO EDITORAL

Victor Hugo Chacén P.
Ismael Mazén G.
Domingo Riggioni C.

CORRESPONDENCIA Y SUSCRIPCIONES

Editorial de la Universidad de Costa Rica
Apartado Postal 75

2060 Ciudad Universitaria Rodrigo Facio
San José, Costa Rica

CANJES

Universidad de Costa Rica
Sistema de Bibliotecas, Documentacién e Informacién
Unidad de Seleccion y Aquisiciones-CANJE
Ciudad Universitaria Rodrigo Facio
San José, Costa Rica

Suscripcion anual:
Costa Rica: ¢ 1 000,00
Otros paises: US $ 30,00

Nimero suelto:
Costa Rica: ¢ 750,00
Otros pafses: § 20,00

Ingenieria 9(1,2): 35-51, 1999 San José, Costa Rica

Resumen

C es suficientemente poderoso para implementar listas parametrizables eficientes y reutilizables.

Summary

Cis powerful enough to implement efficient and reusable parametrized lists.

Real ‘C++ programmers use templates. But
for some, they are wasteful because they
create a new copy of every algorithm for
¢ach class. Others will not use them
because all the source code must be
provided in header files.

L. ASTACK CLASS

emplate <class T> class Stack |

int top; // private members

T vec([100]; /{ constructed by T{()
public:

Stack() : top(0) {}

~Stack(} (1

void push(const T& it) { vec[top++]
= it;)

T pop() { return vec[--top]; |}

1

Stack<int> Sint;
Stack<float> Sfloat;

Figure No. 1. A stack class

Consider class stack, shown in Figure No. 1.
To instantiate a template, one just uses it to
declare variables, as it is the case for both
Sint and Sfloat.

Regretfully, the result of using the template in
Figure No. 1, to declare variables Sint and
Sfloat is equivalent to defining two classes,

class Stack_int {
int top;: // private members

int vec(100]; // constructed by
int(}
public:

Stack_inkt() : top(0) {)

~Stack int{) (}

void push(const ints it) { vec[top++]
= it: |}

int pop() { return vec[--top]; }

[+
Stack int Sint:
class stack_float |

int top: // private members

float vec[100]; // constructed by
float()
public:

stack _float () : top(0) {1}

~stack_float() {}

void push (const floats it)
vec[top++] = it; }

float pop() { return vec[--top); |

Y
stack float sfloat;

Figure No. 2. Duplicate code for a class

one for each type of stack, as shown in Figure
2. When more classes are used, as it is the case
for the C++ Standard Template [STL], the
worse this duplication becomes. In many
applications the resulting executable programs
are just a few kilobytes bigger, which are
negligible for current computer memory sizes,
but in others the size increase of the executable
might be unbearable. But there is another
problem with templates.

When a template class is used to declare a
variable, the compiler specializes the template
code for the declaration; this process is called

!Ing. M.Sc. Prof. Esc. Ciencias Comp. ¢ Informatica. Fac. Ing. Univ. de Costa Rica.

36 INGENIERIA

"Instantiation"; should the compiler not have
the source code available, it would not be able
to roll out the instantiated source code. For
example, when variable Sint is declared in
Figure 1, the compiler generates the equivalent
to class Stack int inFigure 2. To replicate
the class for the chosen type, enclosed in the
squarc parenthesis "<int>" in the template
invocation, the compiler needs the source code
for the class, which forces programmers who
implement templates to make all their
algorithms public. At first sight this seems
good to the people (quite a few claim that
"software should be free"), but a closer look
reveals some caveats.

When the programmer needs access to the
source code, by mistake an error could be
introduced. Hence, it is better for many
different classes to share the same object code,
which can be put into a library, a dynamic
linked library (DLL), a shared library, or
simply distributed in object form, ensuring that
the programmer will not affect it. More
software houses will be eager to develop
generic algorithms when their intellectual
property rights can be protected.

2. THE PROBLEM WITH POINTERS

Why did the C++ Standard Committee choose
defining templates in such a manner to force
the programmer to give away source code?
Are there any ways to avoid this? The simpler
answer is short: yes, just use pointers.

—— * |)llJLL
}

* *
i !]
] |
| v v v

Figure 3: A polymorphic list

Many C++ class libraries implement reference
containers, as the list shown in Figure 3. These
contain not the values, but pointers to the
values. The problem with this approach is that
more space is required to store the container,
because of the extra pointer used for each
stored value. They also impose a time penalty

to access stored values indirectly through their
pointer. This is why this type of polimorphism
was not built into C++; the alternative is to use
templates, even though their use requires
giving away the source code.

Reference containers are completely
polymorphic, as they can contain any type of
object, and even mixes of objects. They are
quite popular as most compilers come with
versions of (hese. The same object code is
shared amongst all lists, regardles of the stored
value type, and the client programmer just
needs to know the specification to use them.
But many C++ programmers do not like them.
Recall that one of the design goals for C++
was to allow for the most -efficient
implementation for an algorithm, and using
exira pointers compromises this requirement.
That is why the STL was developed using
templatcs: to achieve the efficiency of a hand
coded algorithm,

3. ACOMPROMISE

When facing a problem, one usually tries to
find a way to lessen the requirements to reach
an acceptable solution. Complete optimality is
seldom required. I decided to implement a list
class with the following requircments:

1. It should be as efficient as the STL
list class

2. Object code should be shared
amongst all list classes

3. It should hide the list implementation

4. Tt should be programmed in C (not
C+H)

The first requirement is unavoidable, as
otherwise people would no use the list class,
prefering most of the times to either use STL's
or writing their own, to gain efficiency. C and
C++ programmers crave for efficiency. The
sccond requirement comes from my dislike for
all the code replication that using the STL
conveys. It bothers me that, when using a
container, a full new copy of the
implementation is deployed for each different
data type.

DI MARE: C Parametrized Lists 37

While programming my list class, and after
trying to meet the first two requirements, I
found that the third one came for free. The
fourth requirement is one of convenience, as
many C programmers still will not use C++.
Many object that "the C++ compiler available
is difficult to use, which hinders software
development”, or "C++ bloats code", or "I
have a native C compiler, but only a C++
cross-compiler”, and even "I don’t know C++".

I don't sharc any of these reasons, but they are
valid to their defenders. But what really moved
me is that, if it can be done in C, it will be
done with plenty of elegancia in C++.

I belicve that, when faced with scarcity, we
have to squeeze every ounce of ingenuity to
find a solution, which usually leads to a better
overall product. That is why T like doing things
the hard way, to get a better insight in how to
achieve results, and oftentimes to find a more
efficient solution. Recall that Alexander
Stepanov, the STL's main architect, had the
opportunity to change C++ to accommodate
for his special nceds [Ste-95]. Maybe a less
favorable environment would have lcad to a
slimmer C++. Besides, the C language is
ubiquitous.

What did I have to give in? The
implementation I found works well for linked
containers, as is the case for a linked list or a
tree, but my solution does not go as far as
reaching the efficiency and malleability of the
sort() algorithm dcfined in header file
<algorithm>, that comes in the STL library.
Also, C++ templates can be a bit faster than
my implementation, as templates can be used
to get rid of function invocations.

4, DRAWING A LIST

Look into any data structures book, and you
will find that lists are drawn as shown in
Figure 4. If you examine closely the
implementation in the STL library for the

1ist class, which can be found in header file
<list>, you will see that it follows this
structure.

T

v

-+

elem next

elen_1

elem_2

*+—> elen_3 I *+> NIL

Figure 4: Drawing a list

There is no problem with Figure 4, but
compare it with the diagram in Figure 5. In
this later one, the arrows do not point to the
boxes, usually called "nodes” in textbooks, but
instead they link together the "next" fields,
which T call "link fields". Is that a big
difference? Not really, at Icast from the point
of view of the code needed to implement the
list algorithms, because in either list
implementation the code juggles with the
"next" ficld. If pointer "p" points to a node,
this link field is accessed using the following
syntax:

p->next
L—n ‘
i e
v v v(

Flen_l + elen 2 | + elen 3 J

Figure S: Drawing a list and its link fields

Why is this important? Because there are
many algorithms that already exists for classes
conceived as in Figure 4, which can be recadily
translated into equivalent algorithms for a
class drawn as in Figure 5. As a matter of fact,
what 1 did was to use a list implementation
that T had shelved since my school days, to
comec up with the header file clist.h,
shown in Listing 1, and its implementation
clist.c, shown in Listing 2.

38 INGENIERIA

L->last
U B
elenl | H elen 2 | M elem 3 H
| |
first last v
|
Figure 6: clist

Instead of using the regular "point to the first"
implementation, 1 decided to use a circular list
(the "c" in "elist" stands for "circular"), as
in Figure 6, because it is very efficient to add
elements both at the beginning or the end of a
circular list. Programmers seldom use them
because they are a little more difficult to
program; my hope is that my implementation
will be rcusable, so that never again a C
programmer should have to invest time
reprogramming this.

When implementing a list only dealing with
link fields, it does not matter at all what it is
the element type contained in the list, because
every algorithm only deals with the linked
fields. However, some pointer shifting is
required to transform a pointer to the link ficld
into a pointer to the value stored in the list.

6. C IMPLEMENTATION

In the header file clist.h two important types
get declared. Structure 1ink rep is the link
field used to implement the list, and
clist_rep is the list itself, which contains
the pointer to the last element in the list. These
names end in "rep" because they are the
internal Representation of the data types. To
fake data hiding a little, T used the interface
structures called c1_linkand clist. Inthe
header files, all the operations for these
abstract data types follow their declaration.

C does not support neither encapsulation nor
name overloading, which forces the
programmer to use naming conventions to fake
those C++ features. What I chose to do is to
prepend every operation name with the letters
"c1 ", which stand for circular list. For the
link ficld type, ¢l _link, only two operations are
required: initialization with
cl link init_ () and destruction with
cl link done_ (). These names end with
an underscore " " because I also provide
macros to inline their implementation, named
without the underscore (they appear towards
the end of header file clisth). As the C
language does not support references, these
routines receive pointers to link ficlds.

The operations for the circular list are the
usual: initialization, destruction, copying,
counting, etc. As it happens for link fields,
those names that end in underscore can be
inlined using the corresponding macro. What
is significantly different is the way to store
values in one of these lists: instead of
"inserting" the value, what one should do it to
"link" it to the list. Hence, there are no
"cl insert ()" or "cl delete(}"
operations, but "cl link_after()" and
"cl unlink_after()". These take as
arguments pointers to the link fields that will
get stored within the list.

7. USING LISTS

étypedef struct {

int n;

. cl link ik; /* link field ¥/}

) int 1k =
““““ F‘igure Toint 1k

These lists force the client programmer to
include the link ficld in any structures that will
be stored in a list. For example, should a list of
integers be needed, then the programmer must
come up with a structure that includes the
integer value and the link field for the list, as it
is done in Figure 7 (the complete declaration

DI MARE: C Parametrized Lists 39

and implementation for this type are shown in
Listing 3 and Listing 4). How is it to program
using these lists? The quicker answer is to
examine the implementation of function
primes (), in the file c-1ist.c shown in
Listing 5 (notice the dash "-" in the name: c-
list.c is the main test program). Before storing
a value in the list, a new linkable structure
must be obtained from dynamic memory, and
later linked into the list. In function
primes (), the pointer "pInt" is used to
create a new value invoking the macro
binder create(), which is defined in
header file "binder.h", shown in Listing 6.

The result of unrolling

int 1k* pInt;
binder create(Bi, pInt)

is to obtain, inlined, the following code:

int 1k * pInt;

do |
(void*} (pInt) = malloc{(Bi)->size);
(Bi)->init((wveoid*) (pInt))

| while(0)

Beware that, as binder create() is a macro, it
does change the value of pointer "pInt". Were
binder create() a regular C function, to
achieve this same effect would require
passing a pointer to pInt, which of course
would be one of those "pointer pointers",
which are messy [DY-91].

"Bi" points to a structure that contains
function pointers and values, onc being
"size", which is used to obtain a chunk of
dynamic memory big enough to hold the
complete node that will get linked -stored-
within the list. The function Bi->init () is
used to initialize the node just created. The
block of code is surrounded in a do-while
block to force the programmer to put a
semicolon ";" after each macro invocation. The
typecasts are required to deceive the compiler
type checking, and all the parenthesis are used

to avoid ambiguity when the macro gets
unrolled.

Where did variable "Bi" get defined? In the
main program file c-listc. It is a constant
pointer, that can not modify what it points to.
Look for the following line:

const binder * const Bi =
gname binder({int_lk, 1ik):

The macro name_binder (int_1lk, ik)
is also defined in header file binder.h. It is
used to build the name of the structure that
contains both the "Bi->size" field and the
functions pointer "Bi->init ()", which are
declared in file intrath and defined in intrat.c
(just in case you forgot the difference between
"defining" and "declaring”, remember that you
put declarations in header files, and
implementations -definitions- elsewhere; it is
usual for C definition files to have names that
endin".c"

Look closely again to the macro invocation for
name binder{int_lk, ik): it contains
the name of the type, "int 1k", and the
name of the field used to link it to a list "1 k".
Hence, this macro comes up with the name
"Binder int_lk_ ik", which gets declared
and initialized in intrat.c. "Bi" is just a
shorthand that references this structure.

The macro define binder () is invoked
in the implementation file intrat.c, and it gets
passed the addresses of each function used to
handle structure int_1k; in particular, it gets
a pointer 10 int_init (), the function that
carries out the duty of initializing the list node.
In other words, "Bi->init ()" executes
function int_init ().

After creating the new node, its value
"sInt->n" is updated, and later the whole
node is linked into the list:

cl link after(L, pHere, spInt->ik);

40 INGENIERIA

| 1999 FH—> next |
H g
LN ”~ i
N I |
pInt pHere |

Flgure 8: Position vs value pomter

The link operation for the list reccives a
pointer to the list, called "L" in the
primes () routine, the place where to leave
the node denoted by pointer "pHere", and a
pointer to the link field to chain into the list,
"pInt->ik". For this last argument, it is
necéssary to take its address using the "&"
operator because list operations use pointers to
link fields. In this invocation, variable
"pHere" points to a link field, not to the
complete value. (see Figure 8).

Pointer "pInt" is a different type of animal,
as it points to a structure that contains a link
ficld, that "pHere" can point to, to remember
where the last addition to the list was made, to
add the new value just after there. This is
consistent with Figure 6. Adding to the front
of the list requires using a NULL pointer,
which is the value used to initialize position
"pHere".

int_1k * pInt; /* pointer to the node */
cl_link * pHere = NULL;

/* position: pointer to link field */
pHere = &plInt->ik;

/* update current position */

8. POLIMORPHISM

As operation cl1_link after() deals only
with link fields, it would be possible to mix in
the same list different types of objects. For
example, if pFloat points to a structure that
contains a link field "£k", the compiler will
not issue a warning should field
"pFloat->£k" be linked into the list. This
means that these lists are polimorphic, but it
also means that the compiler typechecking is
missing. To include typechecking, you must

use¢ wrapper macros, or wrapper C++
templates.

As the compiler has no recollection of what
type of elements are stored in a container, it is
up to the programmer to keep track of this
important fact. The function has digit ()
traverses a list that contains numbers; to use
them, the programmer must resort to macro
int 1k cast(p) to transformer a position
in the list, which always is a pointer to a link
ficld (type c1 link*), into a pointer to the
whole node (type int 1k*). This is the
purpose of defining int 1k cast(p) in
header file intrat.h; the result of unrolling its
invocation is to obtain the following code:

binder cast(p, int 1k, ik)

This is, in turn, the invocation of another
macro, binder cast (), defined in header
file binder.h, which gets unrolled to yicld this:

({1nt 1}*){vo1d*](((char*)(p)]—
(Offsetmf(lnt 1k, ik))))

This code begets some explanation. Lists are
implemented having link fields pointing to one
another. The client programmer does not care
for those pointer, but for the values stored in
the list. Hence, there must be a way to change
a pointer to the link ficld into a pointer to the
complete value. The procedure to achieve this
goal is to substract from the link ficld pointer
the offsct at which the link field appear in the
node to get. for example, pInt from pHere in
Figure 8. This offset can be obtained with the
C standard macro offsetof() defined in header
file <stddef.h>.

Why is pointer "p" in macro SUB_OFFSET()
typecasted into a {(char *)? Because the C
standard clearly states that a "char" always
has a size of one, which ensures that the
pointer arithmetic used to adjust the link field
pointer yields a pointer to the first bit in the
stored value. Again, the extra parenthesis are
there to avoid ambiguity; they are annoying
only when looking at the source code after the

PI MARE: C Parametrized Lists 41

C preprocessor mangles it, which is seldom
needed. Looking back into Figure 8 it is by
now clear that all these pointer juggling just
*adjusts back” the pointer to the link field into
a pointer into the full stored value.

What is the difference between polimorphism
and parametrization? According to the experts
[MDC-91], the first is a more general concept,
whercas the later is a special type of
polymorphism usually called textual
polymorphism. For most people,
parametrization is a synomim for generic
programming. C++ supports parametrization
in the form of textual polymorphism; C++ is
not a fully polymorphic language.

9, POLIMORPHIC FUNCTIONS

You can argue that containers implemented
linking fields contained in their elements are
not polymorphic, at least no in the traditional
ways. However, what matters is whether is it
possible to write functions that process all the
values in a container, regardless of the stored
value types. An example of such a function is
the operation ¢l print_binder(L,F.B), defined
in clistc. This function receives three
parameters:

const clist * L
The usual pointer to the container.
FILE * F

The file where to print the contents of
the list.

const binder * B

A binder, where information about
the node stored in the list is recorded.

It is in the binder where all the information to
deal with a value stored in a list is collected.
The B->size is needed tomalloc () anew
node of the right size. B->of fset is needed
1o adjust a link pointer into a node pointer. The
other fields defined in binder.h are pointers to
functions that provide basic operations like
copying, initialization, etc. One of these is the

pointer to the print() operation, called
int_print() for the int_ 1k type.

The implementation of the polymorphic
print () operation for the list is straight
forward. The list traversal starts at the first
node, obtained invoking operation
cl first(). Each time that a stored value
needs to be printed, the print function is
invoked through the print() function
pointer stored in the binder: B->print ().
Some heavy pointer typecasting is required,
but a neat trick is to recall this pointer into a
local variable, "PRINT", that can be used to
clearly make the function invocation:

const void (* PRINT)
(void *, FILE *)
=B->print;

VAT

PRINT (SUB*OFFSET(p,
afsdi; F o)

The main difference between this code and the
one used in function primes () is thatin here
we really do not care for the type of the values
stored in the list, because we just need to print
them. and that task is carricd by operation
B->print (), whereas in the other casc we
had to typecast back to a node pointer each list
position to usc it in the algorithm. Hence, there
are two different programming styles: generic
programming, when an algorithm works on a
list regardless of the stored value types, and
client programming, when one uses the
container to store, retrieve and usc values.

The efficiency of operation ¢l print_binder()
matches that of a hand coded function, because
no indirect pointer jumps are used. As a matter
of fact, variable PRINT is used to avoid
looking up this pointer in the binder B. As both
cl first() and cl_last() are inlined
macros, the object code generated for this
algorithin is as fast as the one generated should
the STL library were being used in C++. The
difference here is that all the implementations
arc sharing the same algorithm, and the price
paid is just some pointer adjustment used to

42 INGENIERIA

call the stored value print () operation.
Nonetheless, let us see why the STL would
generate faster code than this,

void gsort{
void* base,size_t nclem, size ¢ width,
int (*fcmp) (const void *, const void¥));

Figura 9. gsort()

If you delve into the standard C header
<stdlib.h> you will find the gsort() ordering
function, shown in Figure 9, which receives a
function pointer, fcmp (), that it uses to
campare the elements in array base until it is
left ordered. The same object code will work
to sort an array of any type; most compiler
vendors only provide the object code to
gsort (), and the programmer just needs to
know its specification to use it.

However, each time that gsort () compares
two elements, it needs to incur in a function
call when invoking fcmp (), which slows
down execution. In contrast, the generated
code for the STL sort algorithm will avoid
such call by inlining the implementation of the
femp (). From this it follows that, when the
print () operation is not implemented as an
inline function, the speed of the STL
print () method for list would be the same
as that of operation c1_print binder().

10. LISTS OF LISTS

There is another test that a generic container
must pass. It should be possible to store a
whole container inside another. To try this for
circular lists, 1 devised function
PT listlist{) that receives a string and
creates a lisi containing as many list as defined
by the numbers in the string. For example, for
string "3.14159" it should print the
following list of list:

(

(33 3) 1) (1) (4 4 4 4) (1) [5 5 5 5 §)

(999995973 9)
)

The first thing to do, as it was the case for type
int_1k, is to create a new "list of lists" type,
called Lint and defined in the test program
itself, c-list.c. What can be stored in a Lint
variable is a list, but every Lint can itself be
put into a list. Hence, the list of lists "LL" is
not of type Lint, but just a regular list that
Jjust happens to contain Lint values.

What is delicate is creating a node to store in
LL. For example, for digit *3', a list with
three integer values must be created, and
linked into LL, to obtain its first value: (3 3
3) . This value is created using pointer "L" and
invoking macro binder create().
However, contrary to what was done in
function primes (), when creating another
Lint value to store in LL, the real name for
the Lint binder is used:
"&éname_binder (Lint,1k)". That is why
this binder necds to be declared, at the very
beginning of test program c-list.c:

declare binder(Lint, 1k);
/* Binder Lint ik */

The new node that pointer "L" denotes is
already initialized, because macro
binder create() invokes the
initialization function for the Lint type:
Lint_init (). After this all its values are
gencrated in a for loop. The code to create and
store a value in this inner list is similar to that
uscd in function primes ()

int lk*pInt;
binder create(Bi,pInt)

What changes is the way to append a value:
cl append{&L->L, &pInt->ik);
Why is there a difference? Recall that "L"
points to a node that can be linked into the list
of lists "LL", so that L->L is the list inside
"L". The ampersand "&" is used because
operation cl1_append () expects a pointer to
a list. How does the big list LL get its value
printed? Its enough to invoke:

DI MARE: C Parametrized Lists 43

cl print binder (&LL,
&Binder_Lint_irk) ;

stdout,

11. LINK FIELD INITIALIZATION

Values that will be stored in generic lists
require to be defined as structures that contain
a link ficld. This field, nonetheless, does not
belong to the value, but to the list. Hence, the
operations for the stored value should never
use nor change a link field. Right? Wrong! Let
us see why.

Look into the implementation of the
initialization operations for types int 1k and
Lint. Both of these operations,
int_init() and Lint init () initialize
the link field, called "ik" and "1k" in each
case, invoking the list link constructor
"cl link init()". The destructors for
these same types also destroy these link fields.
Why is that?

The answer is simple: upon creation, a list
node is just raw memory. After initialization,
all its ficlds must contain consistent values.
Upon creation of a list node, it makes sense to
initialize every field within, including those
that belong to the container. But never again
should it be touched only when destruction
should take place. Doing things another way
will force to include complicated machinery
within both the container and the binder
implementation, which is messier.

Nonetheless, no other operations but the
constructor and destructor should change or
use the link ficld. For example, the copy
operations for both int 1k and Lint never
access the link field: both Lint copy () and
int copy () skip over it.

That was why link fields should be initialized
and destroyed by the node's constructor and
destructor. However, a close examination of
the implementation of both
cl link init () and cl link done()
reveals that their inline code is empty, or
somchow weird when macro NDEBUG is not

defined. The idea behind this is the following;
for debugged code, and in the case of the list
container, no initialization should be done for
the ".next" link field. However, when
debugging, it is nice to have the compiler issue
warnings if things are not done the right way.

For other containers, for example a tree or a
graph, node initialization is not as trivial as for
the list. For example, when using the list
container to implement a graph, the graph link
fiecld would be a listt and the
gr_link init () constructor would have
to invoke the list initializer c1_init (). A
similar thing would be required for its
destructor.

The standard C NDEBUG macro is also used in
the implementation of the list operations
cl link after() and
cl_unlink after (). In the first case, the
conditional compilation includes code to check
whether an already linked node is being used,
because it contains a non NULL value, or
whether an unlinked node is being decoupled
from the container, when the link field is
already NULL.

12. EVALUATION

How diflcrent is to program using the clist
generic list instead of a STL list, or a hand
coded onc? Most of the time, the client
programmer will code algorithms as found in
the implementation of functions primes ()
anddigits () in Listing 5.

The main differences here, should you not
want to call then "annoyances”, is to define the
data type int 1k to include a field, and to
invoke macros binder create() or
binder cast () to change "position in the
list" pointers into "valuc" pointers. The rest of
the code is similar to that used in regular lists..
What if one needs to code a generic algorithm?

Examine again the implementation of the
cl print_binder() function. To come

44 INGENIER{A

up with such code you need to understand a
little bit more how binding is done between the
container and its contained value: the main
idea is that link ficld pointers need to be
adjusted back to point to the beginning of the
cach node before using the operations stored it
the binder table (see Figure 8). However, most
programmers will not need to code generic
algorithms,

Let us examine this implementation from the
optics of the requirements stated before:

It should be as efficient as the STL list class

Almost there: as templates can avoid
*function invocations of the contained
type, template instantiation for simple
types (like char, int, long, etc.) can
result in faster code. For most containers
both this implementation and the STL
would invoke functions to carry out the
basic operations of initialization, copying,
etc. When dealing with linked containers
some speed savings will result because
their values need not exist in dynamic
memory always.

Object code should be shared amongst all
list classes

Mission accomplished!

It should hide the list implementation
Mission accomplished!

It should be programmed in C (not C++)

Mission accomplished!

To my eyes, this is success: you will be the
Jjudge.

13. TRY DOING THIS!

It would be mice if there was something that
could be done with "link" container but not
with regular containers. There is one thing:
supposec you need a value to be stored in two
different container, say a tree and a list. When
using linked containers the way to do it is to

include two link fields in the node, one for the
treec and the other for the list. Can the same
thing be done with regular, STL like,
containers?

The answer is no, unless references (pointers)
to the values are used. This follows from the
fact that STL containers keep their stuff in
dynamic memory, where they copy or remove
values when the insert or delete operations are
used. Hence, what gets stored in a container is
always a copy of the original value, and when
trying to store the same thing in two places the
result will be to have two copies, leaving the
original untouched: that is not the best for all
ocasions.

14. CONCLUSION

You can argue, quite convincingly, that using
binder.h is a mess because a lot of new data
types should be defined just to link them into a
list. T can answer back that it is a good
programming practice to encapsulate data
types in their own structure, but you can conter
attack and say that efficiency is not only
measurcd in terms of program speed and time
usage, but also in terms of programming easy
of use. I could conter argue that when a list is
Just another service of the operating systems,
or the software platform, then programmers do
things right faster, after they learn how to use
generic containers. We could keep argucing
back and forth, but at last T would say this; if
you read up to here, then maybe the ideas I
threw at you are not that bad. Give it a try, and
let me know what the experience of using this
approach teaches you. Remember that most
ideas arc uscless, and many are useful just to
breach the gap to reach other discoveries.

A little macro tweaking with some pointer
Juggling yields linked containers good enough
for most applications. It is always better to
implement them in an Object Oriented
Language [Str-88], but with a little care a
programmer can build a container library in C
[B5G-92] that is efficient and provides some
of the better features found in more
complicated libraries, like the C++ STL. You

DI MARE: C Parametrized Lists 45

can download all the code in this article from:
htlp://www.di—rnare.com/adolfo/p/src/c—]ist.zip

15. ACKNOWLEDGMENTS

Both Ronald Argiiello and Carlos Loria took
the time to criticize and earlier version of this
paper. This research was made in project
126-98-391 "Polimorfismo uniforme mas
eficiente”, funded by Vicerrectoria de
Investigacion in the Universidad de Costa
Rica. The Escucla de Ciencias de la
Computacion e Informatica has also provided
funding for this work.

16. BIBLIOGRAPHY

[BSG-92] Bingham, Bill & Schlintz, Tom &
Goslen, Greg. OOP Without C++. C/C+
User's Journal, Vol.10, No.3, pp [31, 32, 34,
36,39, 40], March 1992.

[DY-91] Dos Reis, Anthony & Yun, Li
Pointer-Pointers in C. C/C++ Users Journal,
Vol.9 No.3, pp [83-84], March 1991.

[MDC-91] Morrison, P. & Dearle, A &
Connor, R. C. H. & Brown, A. L. An Ad Hoc
Approach to the Implementation of
Polymorphism. ACM Transactions on

Programming Languages and Systems,
Vol.13 No.3, pp 342-371, July 1991

[Ste-95] Stevens, Al Alexander Stepanov and
STL. Dr. Dobbs's Journal, No.228, pp

[118-123], March 1995.
http://www.sgi.com/T echnology/STL/drdobbs-
interview.html

[Str-88] "Stroustrup, Bjarne. What is Object-
Oriented Programming. IEEE Software, pp
[10-20], May 1988.

hitp:/Awww. research.att.com/~bs/whatis.ps
Este articulo esta disponible en el siguiente

sitio internet: http://www.di-
mare.com/adolfo/p/c-list. htm

46 INGENIERIA

ANEXO 1

/* clist.h v0.1 (C) 1999 adolfoRdi-mare.com */

#ifndef CLIST H
#define CLIST H

#include "binder.h™

#ifdef cplusplus
extern "C" {
#endif

typedef struct link rep |
struct link_rep ¥ next;
} link_rep;

typedef struct |
link_rep * last;
I clist_rep;

typedef struct {
link_rep private ;
} el link;

/* private */

typedef struct {
clist_rep private_;
} clist, *pclist;

/* private */

void cl_link_init_(cl link* 1k);:
void cl_link done_(cl_link* 1k):

void cl_init_ {clist *);
void cl_link_after(clist *, cl_link*,
cl_link+*);

€l link* cl_unlink after(clist *, cl link+):

cl link* cl_first_ (const clist *);
cl_link* cl_last_ (const clist *);
cl_link* cl_next_ (const clist +, cl_link +);

cl link* ¢l nth(const clist *L , cl_link *q , size_t
nj:

size_t cl_count {const clist * L);
int cl_empty (const clist * L);

void cl_append_(clist *, cl link*);

/* All these reguire a binder +/

void ¢l_swap_binder (clist * it, clist * SEC,
const binder *);

void cl_copy binder (clist * it, clist * src,
const binder *);

int cl_equal_binder(const clist *, const clist +,
const binder *):

void cl_print_binder(const clist *, FILE *,
const binder *);

void cl delete_all (clist * it,

const binder *);

void cl_done_binder (clist * it,

const binder *);

#ifdef NDEBUG
/* Use #define to optimize cut code */
#define ¢l_link init(1k)
#define c¢l_link done(1lk)
#else
/* typecheck, but only a little */
#define <cl link init(lk) (({link rep*) lk)->next
= NULL - B -
fdefine «c¢l_link_done(lk) do {} while{ (lk) !=
{1k})
#endif

#define cl_init(L) ({clist_rep*) (L)) ->last = NULL
#define c¢l_first(L) (cl_link*)
\
((NULL == ((clist_rep*) L)->last)
A
? NULL
A

((clist_rep*) (L)) ->last->next)

#define cl_last(L) ((cl_link*) {(clist_rep*) (L)) -
>last)

#define ¢l next(L,p) (cl_link*)

A\

(((link_rep*) p == ((clist rep*) L)->last
? NULL'

¢ ({link_rep*) p)->next)
kdefine cl empty(L) { NULL == cl_last(L))
#define cl _append(L, p) \
~ cl_link_after(L, cl_last(L}, p)
#define push(S, p) cl link_after(S, cl last(S), p)
#define pop(S, p) <l _unlink_after (S, NULL)

#define cl_done_binder cl delete all
#define COHPILE_NON&IHLINEiﬂETHODS
#ifdef _ cplusplus

éendif

#endif /+ CLIST H */
/* EOF: clist.h */

ANFXO 2

/* binder.h v0.1 (C) 1999 adolfoRdi-mare.com */

#ifndef BINDER H
#define BINDER_H

#include <stdio.h> /* FILE */
#include <stdlib.h> /* malloc() +/
tinclude <stddef.h> /* offsetof() */

#ifdef cplusplus

extern "C" [
#endif

typedef struct |

void (* init) (void *);
vold (* copy) (void *, void *):
int (* equal) (void *, void *);
void (* print) (veoid *, FILE *);
void (* done } (void *);

size_t size;
size t offset;
b binder;

#define set binder (B, TYPE, LINK, INIT, COPY, EQUAL,
PRINT, DONE) \

do {

\

(B)->init = (void (*) (void *))
INIT:;

(Bl ->copy = { void (*) (void *, void ¥*) i)
COPY;

(B)->equal = ({ int (*) (void *, void *})
EQUAL;

{(Bl->print = { void (*) (void *, FILE *))
PRINT; \

(B)->done = (void (*) (void +) H
DONE: A

(B)->size = sizeof (TYPE); \

(B)->offset = offsetof(TYPE, LINK); \

| while(0) /* CAVEAT: no typechecking! */

#define name_binder (TYPE, LINK) \
Binder_ ## TYPE #% _ ## LINK

#define declare binder (TYPE, LINK) \
extern binder name_binder (TYPE, LINK)

fdefine define_binder (TYPE, LINK, INIT, COPY, EQUAL,
PRINT, DONE) \
binder name_binder (TYPE, LINK) = {
\
(void (*) (veid *)) INIT,
\
[void (*) (void *, void +) } COPY,

DI MARE: C Parametrized Lists 47

\ (int (*) (void ¥, void *)) EQUAL,
] (void (*) (void ¥, FILE *)) PRINT,
i (void (*) (void *)) DONE,
: sizeof (TYPE),

offsetof (TYPE, LINK) }

#define binder_destroy(B,p) \
do { (B)->done(p); free(p); | while(0)

fdefine binder CREATE(B,p) \
((B)->init((void*) (p) = malloc((B)->size)),
(p))

fdefine binder create(B,p)
do {
{void*) (p) = malloc((B)->size);
(B)->init((void*)(p));
] while(0)

-

fdefine ADD_OFFSET(p, offset) (void *)(((char*)(p))
+ (offset))
fdefine SUB_OFFSET(p, offset) (void *)(((char*) (p))
- (offset))

fdefine binder_cast(p, TYPE, LINK) \
((TYPE*) SUB_OFFSET(p, offsetof(TYPE, LINK)) }

#ifdef _ cplusplus
)
#endif

#endif /* BINDER_H */
/* EOF: binder.h */

#ifdef _ cplusplus
}
#endif

#endif /* INTRAT_H */
/* EOF: intrat.h */

ANEXO 4

ANEXO0 3

/* intrat.h v0.1 (C} 1999 adolfo@di-mare.com ¥/

fifndef INTRAT_H
#define INTRAT_H

#ifdef _ cplusplus
extern "C" [

fendif

#include “clist.h"

typedef struct {

int n;
cl_link ik: /* link field */
] int_1k:

declare_binder (int_1k, ik):

fdefine int_lk_cast (p) binder_cast (p, int_lk,

ik)
void int_init (int_lk * it);
void int_copy (int_lk * it, int_lk * src);
int int_equal(int_lk * it, int_lk * src);
void int_print (int_lk * it, FILE)
void int_done (int_lk * it);
typedef struct {

long num, den;

cl_link rk; /* link field *+/
) rat_lk;

declare binder(rat_lk, rk);
#define rat_lk cast (p)
rk)

binder_cast (p, rat_lk,

void rat_init (rat_lk * it}:

void rat_copy (rat_lk * it, rat_lk * src);
int rat_equal(rat_lk * it, rat_lk * src);
void rat_print(rat_lk * it, FILE)
void rat_done (rat_lk * it);

/* c-list.c v0.1 (C) 1999 adolfoldi-mare.com */

#undef NDEBUG
fdefine this */
#include "intrat.h"

/* production code should

typedef struct |

clist L:
cl_link lk; /* list of int_lk */
} Lint;

void Lint_init(Lint *L) {
cl_init (&4L->L);
cl_link_init (sL->1k); /* check when NDEBUG */

declare_binder (Lint, 1k):
const binder * const Bi = &name_binder(int_lk, ik);

void Lint_copy(Lint *L, Lint *src) {
cl_copy_binder (¢L->L, ésrc->L, Bi):

]

int Lint_equal(Lint *L, Lint *src) {
return cl_equal_binder (¢L->L, &src->L, Bi);

]

void Lint_print (Lint *L, FILE *F) {
cl_print_binder (s¢L->L, F, Bi);

1

void Lint_done (Lint *L) {
cl_done_binder (4L->L, Bi):
cl_link_init(eL->1k};

I

define binder (Lint, 1k,

Lint_init, Lint_copy, Lint_equal, Lint_print,
Lint_done
)

#define FALSE 0
#define TRUE (!FALSE)

void primes(clist *L, unsigned n) {
L S e S Y

int i,
cl_link * pHere = NULL; /* points to pInt->ik

for (i = 1; i<n; i++) |
int is_prime = TRUE;
for (3 = 2; j<i: j++) |
if (0==11% 3j) {
is_prime = FALSE;
}
]
if (is_prime) {
int_1lk * pInt; /* pointer to the node

£l
binder create(Bi, pInt);
pInt->n = i;
c¢l_link_after (L, pHere, &pInt->ik);
pHere = &pInt->ik; /* current position
i

| Print all numbers in L that have digit "d" |

48 INGENIERIA

A ommcesem—cmsscssss——— e cassssssss-————- ./ ¢l _print_binder (4L, stdout, sname binder(int_lk,
ikl
el_link ‘p; fprintf (stdout, "\n"};
fprintf(F, “\nhas_digit (id) ==\>", d}; { int i;
for (p = cl_first(L}; (NULL != p}; p = for (i=0; i<10; i++) |
cl_next(L,p)) | has_digit(sL, i, stdout);

int_lk *plnt = int_lk_cast(p); I
int n = plnt->n; I .

int has_it = FALSE: cl_done_binder| &L, sname_binder(int_lk,
pInt = int_lk_cast(p); ikly:
if (coreleft() !'= memAvail) (
do | fprintf{stdout, “\n\nBOOM!!!"“);
int digit = n % 10; I
if (d == digit} |

has_it = TRUE; PI_listlist("3.14159");
}
n=n/ 10; if icoreleft() != memAvail) [
} while (0 != n}; fprintf(stdout, "\n\nBOOM!!!");
I
if (has_it) | return 07
fprintf(F, " %d", pInt->n); i
]
} #4if 0 .
i const binder * const BLL = &name_binder (Lint, 1k);
int my_random(int *seed) {
#include <string.h> /* strlen() */ finclude <values.h> /¢ MAXINT */
void PI_listlist{const char* V) { long 1 = ((leng) (*seed)) * 16381 + 18411;
L ——— Y sgeed = (int) (1 >> 16) & MAXINT;
| Uses LL, a list of lists, and prints it |
Bt e L LU DS L v/ return ‘seed;
I
int i,j:
size_t len = strien(V); void alternativel() |
clist LL; /* list of lists */ binder not_pointer BLL;
cl_init{&LL); set_binder (énot_pointer BLL, Lint, 1k,
Lint_init, Lint_copy, Lint_equal
fprintf(stdout, ™\n\nPI_listlist() ==\>\n"}; Lint_print, Lint_done
for (i=0; i<len; i+4) | Vi
int W ow ('.' == V[i) ? 0 : V[i)-'0");]
dendif
Lint *L;
f* EOF: c-list.c ¢/
/* add a new element to LL ¢/
binder_create(&name_binder(Lint,lk), L }:
ANEXO §
cl_append(§LL, sL->1k); Jv clist.c v0.1 (C) 1999 adolfoBdi-mare.com */
for (j=0; j<VVW; j++) | #include "clist.h"
int_lk * pInt;
binder_create(Bi, plnt); void ¢l _link_aftericlist *L_, cl_link *p_, <l_link*
plnt->n = W px)
. Jo= e —— —_— POP R —— oy
cl_append(sL->L, spInt->ik}; | Links after position “p" the object that contains

! I link field “*px".
I - To link as first set p == NULL

fprintf(stdout, “."); \t=szszans sssnsss===t /
cl_print_binder (¢L->L, stdout,
éname_binder (int_lk, ik}): clist_rep *L = (clist_rep*) L_;
b link_rep *p = (link_rep*) p_;
fprintf (stdout, "\n"): link_rep *px = (link_rep*) px_;
cl_print_binder (4LL, stdout, &name_binder (Lint, #ifndef NDEBUG
ki) : . if (NULL != px->next) {
fprintf(stdout, "\n"): abort () ; /* check unlinked */
¥
cl_done_binder (&LL, éname_binder (Lint, 1k)); dendif
} if (NULL == L->last) { /* empty list: s
pR->next = px; /* link as first ¢/
L->last = px;
#include <alloc.h> }
int ma@nt} { else if (NULL == p) (/* link as first ¢/
clist L; P = L->last->next;
unsigned long memAvail = coreleft(); L->last-»next = px;
. pH-cnext = p;
cl_initisel);]

. else if (p == L->last) [/* link as last ¢/
primes(£L, 102); px->next = L->last->next;
fprintf (stdout, "\n\nprimes(102) ==\>\n"); L->last->next = px;

48 INGENIERIA

A ommcesem—cmsscssss——— e cassssssss-————- ./ ¢l _print_binder (4L, stdout, sname binder(int_lk,
ikl
el_link ‘p; fprintf (stdout, "\n"};
fprintf(F, “\nhas_digit (id) ==\>", d}; { int i;
for (p = cl_first(L}; (NULL != p}; p = for (i=0; i<10; i++) |
cl_next(L,p)) | has_digit(sL, i, stdout);

int_lk *plnt = int_lk_cast(p); I
int n = plnt->n; I .

int has_it = FALSE: cl_done_binder| &L, sname_binder(int_lk,
pInt = int_lk_cast(p); ikly:
if (coreleft() !'= memAvail) (
do | fprintf{stdout, “\n\nBOOM!!!"“);
int digit = n % 10; I
if (d == digit} |

has_it = TRUE; PI_listlist("3.14159");
}
n=n/ 10; if icoreleft() != memAvail) [
} while (0 != n}; fprintf(stdout, "\n\nBOOM!!!");
I
if (has_it) | return 07
fprintf(F, " %d", pInt->n); i
]
} #4if 0 .
i const binder * const BLL = &name_binder (Lint, 1k);
int my_random(int *seed) {
#include <string.h> /* strlen() */ finclude <values.h> /¢ MAXINT */
void PI_listlist{const char* V) { long 1 = ((leng) (*seed)) * 16381 + 18411;
L ——— Y sgeed = (int) (1 >> 16) & MAXINT;
| Uses LL, a list of lists, and prints it |
Bt e L LU DS L v/ return ‘seed;
I
int i,j:
size_t len = strien(V); void alternativel() |
clist LL; /* list of lists */ binder not_pointer BLL;
cl_init{&LL); set_binder (énot_pointer BLL, Lint, 1k,
Lint_init, Lint_copy, Lint_equal
fprintf(stdout, ™\n\nPI_listlist() ==\>\n"}; Lint_print, Lint_done
for (i=0; i<len; i+4) | Vi
int W ow ('.' == V[i) ? 0 : V[i)-'0");]
dendif
Lint *L;
f* EOF: c-list.c ¢/
/* add a new element to LL ¢/
binder_create(&name_binder(Lint,lk), L }:
ANEXO §
cl_append(§LL, sL->1k); Jv clist.c v0.1 (C) 1999 adolfoBdi-mare.com */
for (j=0; j<VVW; j++) | #include "clist.h"
int_lk * pInt;
binder_create(Bi, plnt); void ¢l _link_aftericlist *L_, cl_link *p_, <l_link*
plnt->n = W px)
. Jo= e —— —_— POP R —— oy
cl_append(sL->L, spInt->ik}; | Links after position “p" the object that contains

! I link field “*px".
I - To link as first set p == NULL

fprintf(stdout, “."); \t=szszans sssnsss===t /
cl_print_binder (¢L->L, stdout,
éname_binder (int_lk, ik}): clist_rep *L = (clist_rep*) L_;
b link_rep *p = (link_rep*) p_;
fprintf (stdout, "\n"): link_rep *px = (link_rep*) px_;
cl_print_binder (4LL, stdout, &name_binder (Lint, #ifndef NDEBUG
ki) : . if (NULL != px->next) {
fprintf(stdout, "\n"): abort () ; /* check unlinked */
¥
cl_done_binder (&LL, éname_binder (Lint, 1k)); dendif
} if (NULL == L->last) { /* empty list: s
pR->next = px; /* link as first ¢/
L->last = px;
#include <alloc.h> }
int ma@nt} { else if (NULL == p) (/* link as first ¢/
clist L; P = L->last->next;
unsigned long memAvail = coreleft(); L->last-»next = px;
. pH-cnext = p;
cl_initisel);]

. else if (p == L->last) [/* link as last ¢/
primes(£L, 102); px->next = L->last->next;
fprintf (stdout, "\n\nprimes(102) ==\>\n"); L->last->next = px;

DI MARE: C Parametrized Lists 49

L->last = pH;

] size_t cl_count{const clist *L_}

else | /* link in the middle */ AL \
px->next = p->next; | Returns the number of elements in the list |
p->hext = px; [——— .

I clist_rep *L = (clist_rep*) L_;

1

cl_link* cl_unlink_after(clist *L_, cl_link* p_) I

| Detaches from the list the object that comes after |
| position "p" in the list. |
| - Returns a pointer to the link field just detached |
| - To unlink the first, set p == NULL

W == v

clist_rep *L = {clist_rep*)
link_rep *p = (link_rep*)
link_rep *px;

L_.
P_

#ifndef WDEBUG
if (NULL == p->next]} |{
abart () /* check unlinked +/

]
fendif
if (p == NULL} {
px = L->last->next;
if (L-»last == L->»last-»next] [
L->last = NULL; /* just 1 element */
)
else | /% detach the first */
p = L->last->next;
L->last->next = p->next;
1:
]
else | /* p '= NULL */
px = p-rnoRt;
if (L->last == L->last->next] |
abort(}l; /* only 1 element ==> p must be
HULL */f
I
else [/* detach from the middle */
link_rep *tmp;
tmp = p->*next;
p-*next = tmp->next;
if (tmp == L-»last) {
L->»last = p;

b
i

kifndef NDEBUG

px-»next = NULL; /* clean up link field */
gendif
return (cl link*} px;

cl_link* c¢l_nth{const clist *L_, cl_link *q_, size_t n)
|

I == smmEE=smso===== .

| Returns the position of the "n-th" element
| counting from “g"
| - For n==0 returns “gq"

EE=s===—===== -

4
[
|
I
!

size t i;
link_rep *p:

if (0 ==n) |
return q_;
)
else if (NULL == q) {
p = (lelist_rep*} L_}->last;
!
else [
p = (link_rep*] q_;
b

for (i=0; i!= n; i++, p = p->next) {}
return {cl_link*) p;

link_rep *p = L->last;
size t n = 0;
if (L-»last != HNULL} |
p = L->last;
do |
P = p->next;

| while {p != L->last};

return n;

i == +y
I I
i1 All these reqguire a binder ||
I I

\t==== cwmmat [

void cl swap binder (clist *LLL, elist *SRC, const
binder *B) [

P R — ——

| Swaps the contents of "L" and “src". |

| - Mo copying in done: only peointer swapping |

| - Takes O(1) time and space |

=m==: 7

link rep * TMP = {((elist_rep+*} (LLL}) -
»last;

ticlist _rep*) {LLL))-»last = ((clist_rep*) (SRC))-
»last;

{{clist_rep*) (SRC})->last = TMF;

#pragma argsused
i

void cl copy_binder {clist *L_, clist * src_, const
binder *B} |

=== LY
| Copies list “sre" over "L " |
| - B->copy (] is used to copy each element |
| - List "src™ remains unchanged |
| - Takes Oin) time and space |
— S ——
clist _rep *L = (clist_rep*) L_;
clist rep *src = (clist_rep*) src_;
link_rep *DELETED; B
if {L==src) |{
return; /* aveoid auto-copy */
}
DELETED = L->last;
if (NULL != DELETED)
DELETED = L-»last->next; froel _firsti)
v
L-»last-»next = NULL;
L=>last = NULL;
]
/¢ copy element by element, from sre */
if {NULL '= src->last) { /* src isn't empty */
const ofs = B-roffset;
const size = B->size;
const void (* INIT) {void *) = B-»init;
const veld (* COPY) {veid *, veid *} = B-
BCopy:
J* INIT: pointer to a function that returns
vold,
and takes a [void *} as argqument.
i

1ink_rep * pSre;

pSrc = src->rlast;
do |
vold * pHew;

50 INGENIERIA

link_rep * pLink; /* == pNew->Link */
pSrc = pSrc->next;

/* "bend backwards" to avoid malloc()-ing

*/
if (NULL != DELETED) { /* reuse nodes from
L+
pLink = DELETED;
pNew = SUB_OFFSET(pLink, ofs);
DELETED = pLink->next;
)
else |
INIT (pNew = malloc(size)):
plink = (link_rep *) ADD OFFSET (pNew,
ofs);

}

COPY (pNew, SUB_OFFSET(pSrc, ofs}):
c¢l_append(L_, (cl_link*) pLink);

} while (pSrc != src-»last);

1

if (WULL !'= DELETED) { /* delete rest */
const ofs = B->offset;
const veoid (* DONE) (void *) = B->done;

while (DELETED != NULL) {
void *del = SUB_OFFSET(DELETED, ofs};
link_rep *p = DELETED->»next;

DONE (del) ;
free(del);
DELETED = p;

int cl_equal_binder(const clist *L_, const clist ‘src_
const binder * B) |

I == == E:

I Returns 0" when "L " and "src" are different

| - B->equal(} is used to compare elements

|
|
I - Takes O(n} time and O(1l) space |
S)

W
link_rep *p, *g:
clist_rep *L = (clist_rep*) L_:
clist_rep *src = {clist_rep*) src_;
const ofs = B-»offset;
const int (* EQUAL) (void *, void *) = B->sgual;
if (L-»last == src->»last) |
return !0; /* TRUE +/
)
if ({NULL == L->»last) || (NULL == src->last)) |
/* avoid using a NULL pointer -derreferencing-
b
return 0; /* FALSE, because both can't be NWULL
4
}
/* compare elements one by one */
p = L->last;
g = src->last;
do |
P = p-*next;
q = g->next;
if (! EQUAL{ SUB_OFFSET(p, ofs}, SUB_OFFSETIq,
ofs))} |

return 0; /* FALSE +/
)
| while { {(p != L->last) && (g != src->last));

return {p == L->last) && (g == sre->last);

void ¢l print binder(const clist *L, FILE *F, const

binder * B) |

T — \
| Prints the whole list with comas and |
| parenthesis, like this: |
I - (1,2, 3, 4, 5) or even () |
\t=====zzza= *f

const ofs = B->offset;
const void (* PRINT) (void *, FILE *) = B->print;
el _link *last = ¢l _last(L):

{
cl_link * p = ¢l _first(L):
fprintf(F, "("}:
while (NULL '= p) {
PRINT(SUB_OFFSET(p, ofs), F);
if (p != last) {
fprintf(F, ™ ");

1
p = cl_next(L, pl;
I
fprintf(F, "™i");
)

fprintf(F, "“(™};
if (lcl_empty(L)} |
cl_link * p = cl_first(L);
do |
PRINT(SUB_OFFSET(p, ofs), F):
p = cl_next(L, p};
if (p !'= last) {
fprintf(F, ™ "};
1
i while (p != last);
i
fprintf(F, "}";

void ¢l_delete_all(clist *L_, const binder* B) |

JR e —— N = .

| Destroys the whole list |

| - B->dene() is used to destroy each element |

\tmemes === == - J
clist_rep *L = (clist_rep*) L_;

link_rep *p;

if (L-»last != NULL} {
P = L->last; /* begin from the first
v
L->last = L->last->next;
p->*next = NULL; /* force last to be NULL
v
while {L->last != NULL) {
void *del = ((char*)L->last) - B->offset;
p = L->last->next;
B->done (del}); /* never use last
A
free(del); f* after frea()
v

L-»last = p;

1]

void cl_done _binder_i{clist *L_, const binder* B} |
cl delete_all(L_, B):
]

/* Hon-macro versions of inlined code +/
#ifdef COMPILE_NON_INLINE_HETHODS

void ¢l _link_init_(cl_link* link) {
#pragma argsused
I /* avoid “argument [link] not used" warning */

void ¢l_link_done_(cl_link* link) |
Kpragma argsused
I

DI MARE: C Parametrized Lists

51

void ¢l init {elist *L) |
Je= — m—===msmms=t)
| Initializes the list |
\9

((clist_rep*) (L)) ->last = NULL:
1

cl_link* cl_first_(const clist *L) {
return cl_firsti(L);
1

cl_link* ¢l_last (const clist *L) {
return cl_last(L}:
}

cl link* cl_next_ (const clist *L, cl_link *p) |

Je= g S—

| Returns the position that comes after

| - After the last position, returns NULL. I

AN === *
return cl_next (L,p):

int cl_empty_{const clist * L) |
return cl_empty (L} ;
)

cl_append (L, p);

1

void rat_init(rat_lk * it) {
it-»num = 0;
it->den = 17
cl_link_init{&it->rk);

]

void rat_copy(rat_lk * it, rat_lk * src) |
it-»num = src->num;
it-»den = srec->den;

1

int rat_equalirat_lk * it, rat lk * src)i
return {it-»>num * src->den) == (src->num

»>den) ;

]

vold rat_print{rat_lk * it, FILE *F) [
fprint{(F,"(%d,%d)", it->num, it->den);
]

void rat_done(rat_lk * it) |
cl_link done{&it->rk);
|

/* EOF: intrat.c */

it-

fendif

J/* EOF: clist.c */

ANEXO 6

/¥ intrat.e v0.1 (C) 199% adolfoBdi-mare.com */

#include "intrat.h"

Jo--
1l int_1k |
\' ________ _il,n’

Y

define_binder (int_lk, ik,

int_init, int copy, int_equal, int_print,
int_done
1:

void int_init(int_lk * it} |
it-»n = 07
cl_link_init{sit-»ik);

t

void int_copylint_lk * it, int_lk * src} (
it-»>n = src-»n;
]

int int_equal (int_lk * it, int_lk * src){
return [it-»n == sre->n};

1

void int_print (int_lk * it, FILE *F) {
fprintf(F, "4d", it->n);
l

veoid int_done(int_lk * it) {
cl_link_done(sit->ik);

define_binder(rat_lk, rk,
rat_init, rat_copy, rat_equal, rat_print,
rat_done

)

