Revistade la Universidad de Costa Rica
JULIO/DICIEMBRE 1994 VOLUMEN4 N¢ 2

Iﬂgeﬂi@fia

Ingenieria 4 (2): 21-31 1994 San José Costa Rica

RESUMEN

LNGrepes unsistema completo que puede asistir en la tarea de traducir alenguas fordneas programas escritos enalgunos
de los dialectos xBase. Quien se encarga de realizar la traduccién nunca necesita editar los programas fuente. Mis ain,
todas las versiones de cada programa residen en el mismo archivo, lo que recorta la complejidad de mantener cada una de
las versiones del programa traducido.

SUMMARY
As the need to accommodate a number of (natural) languages grows, it becomes important to be able to write programs
that handle multilingual input and output. LNGrep is acomplete system that can assist in the translation of xBase programs
into foreign languages. Whoever is in charge of the translation will not need to edit the source files. Furthermore, all the
versions for each program reside in the same file, which cuts down on the complexity of maintaining each version of the

translated programs.

Formany years now, my brother Luis Alberto
has been a gold mine of ideas for programming
projects. He keeps coming up with weird
requirements that I enjoy transforming into
working programs.

The other day he came to my house and asked
me to develop a program to translate source
xBase code from English into Spanish, and
viceversa. He wasn't expecting an Al program:
what he needed was a way to translate every
Spanish literal string in the program into its corre-
sponding English version. A program would thus
havetwo versions: one in the English language
and the other in Spanish. Their differences
would be minor, because only the string literals
and other minor details would be changed in each
version of program. Luis needed this program
because one of his clients is an international
corporation with many subsidiaries, both in the
USA and in the Caribbean, and the management
needed to use the same programs throughout.
This can hardly be considered a special case in
these days of "modemn globalization".

Luis told me that there is a large market
of organizations that serve non-english-
speaking customers, and that the opportunity
to earn lots of money was there for those who
came up first with the right translating software.

* Profesor Catedratico, Escuela Escuela de Ciencias de la
Computacion e Informética, Universidad de Costa Rica.
email: adimare (@cariari.ucr.ac.cr

However, to perform the translation there was a
special requirement: "You should not touch the
source files", he told me. This is hardly an out-
of- line requirement. For most companies, their
programs are very important. If you are con-
tracting a consulting firm to have some work
done, it is only normal for you to take the path
of lowest risk. No company likes a third party
messing around with its source code; it's just too
easy to delete or change a line, and wreck a
whole program.

In our first conversation, Luis told me:
"Adolfo, I want you to create a TEXTFILE
where all the changes are done, and later applied
to the source files". That seemed like a good
idea: I would write a program to extract from the
source files all the lines that need to be trans-
lated, then someone translates them, and they
are later reapplied to the source files. I immedi-
ately sat down to produce the LNGrep System to
translate xBase programs.

1 took the following premises as truth. First,
the lines that needed translation were those that
had an xBase string in them. This still holds true
in 95% of the cases, and the remaining 5% of
cases are very difficult to handle with a general-
purpose program. Secondly, I assumed that the
translations would be made by a non- program-

2 INGENIERIA

mer, which meant that a TEXTFILE where the
translations would take place should be used.
Eventually, a programmer could take to look in
the source code. Thirdly, I decided notto support
TEXT-ENDTEXT blocks.

I named this approach the LNGrep System
as asomewhat (un)fortunate assoctation with the
UNIX grep program, thatextracts from a text
file all those lines that have a common string
(FIND is the downsized MS/DOS version of grep).
The LNGrep programs to translate into a foreign
language xBase source code are the following:
-LNGrep: Extracts into a TEXTFILE all the

xBase strings from the source code.

- LNGapply: Inserts intothe source code the trans-
lated lines from TEXTFILE.

- LNGswap: Changesthe language of the source
programs by commenting out trans-
lated lines.

- LNGclean: Removes all translation annota-
tions from the source files to obtain
the original files.

Figure 1 is a scheme of how these programs work
together.

There are many ways to implement the above
scheme. The one I chose keeps in every source

sourse0.prg

sourse2.prg

sourse2.prg

soursed.prg
soursel.prg
sourse2.prg

PHASE 1: TRANSLATION

soursel.prg >——>G,-,p TEXTFILE

Plain
TEXTFILE —® TEXTFILE

sourse0.prg

Translated LNGappl: soursel.prg
-Y > <

TEXTFILE sourse2.prg

PHASE 2: PRODUCTION

sourse0.prg
soursel.prg —-—> soursel.prg

(Giea] > dw

Translated

sourse(.prg

sourse2.prg

Figure No. 1

DI MARE: LNGrep: Easy and secure xBase ... 23

file all the program versions for each language.
For this, what I did was to comment out in each
source file all the translated source lines except
the firstone. Toavoid confusingatranslatedline
with any comment line, I also included an
annotation in every translated line to identify it.
Let us suppose that the original segment of code
is what's shown in Figure 2 under "original
source". After each string is translated and all
the translations are annotated and included inthe
source file, this segment of code will look like
what's shown under "translated source”.

ORIGINAL source
xCust = "Enter Customer Code"

TRANSLATED source
xCust = "Enter Customer Code" && LNG(us)

* xCust = "Codigo de Cliente" && LNG(sp)

Figure 2

In the example of Figure 2, what happened
isthat the source line that had a string in need of
translation got duplicated in the final source of
the program. Within each group of translated
lines, the first one is the English version, and the
other ones are for each foreign language version.

It's easy to tell apart each group of
translated lines, because the first line in a group
is always a non-commented-out line, and it
always has a language annotation ofthe form
LNG(<language>), where the string <lan-
guage> is chosen by the programmer. The rest
of the lines in a string group are commented out
lines, with a different language annotation. This
scheme is quite flexible, because all the lan-
guage versions of a program module can reside
in a single source file:

@ 14,20 say "Beautiful!" && LNG(us)
*@ 14,20 say "{Precioso!" && LNG(sp)
*@ 14,20 say "jBellissimo!" && LNG(it)

The inner workings of the LNGrep system can
be best explained using an example. Let's suppose
that weneed to translate the programs SHORT.prg
and ENBOX prg, shown in Figure 3.

The first step is to invoke LNGrep to obtain a
TEXTFILE that contains all the lines that should be
translated. For this, LNGrep scans the source files
SHORT.prg and ENBOX.prg looking atevery line
that has either a quote (') or double quote ("). In any
xBase language a string is enclosed in either quote
character. If directory C\PRG\SOURCE contains
only these two source files, the command line
invocation for LNGrep is the following:

C:\> cd \prg\source
CAPRG\SOURCE> LNGrep -add * prg LNGus) >TEXTFILE

As with many other DOS programs, LNGrep
accepts wildcards, as in [*.prg]. It also accepts
optional command line arguments, that have the
form [-/+]<option>. For example, the three com-
mand line options "-add", "+add" and "/add" are
equivalent, and tell LNGrep to include a new line
with an empty annotation for each of the quoted
lines in the source files. TEXTFILE is the name of
the file that will contain all the annotated lines. The
new contents in TEXTFILE are shown in Figure 4,

*: SHORT.prg - Sample program
XCustNo=""
@ 12,20 SAY "Customer Code" get xCustNo
read
@ 14,20 SAY "Hello, World!"
CALL EnBox(xCustNo, 5)

*: EOF: SHORT.prg

* EnBox.prg

PARAMETERS row, str

* This procedure centers "str" at "row" on the screen
* and surrounds it with a double border box.

* - row <23 is required

PRIVATE j
J=IIF("=str,"*",SUBSTR(LTRIM(RTRIM(str)),1,75))
* SET EXACT OFF => (‘abc'="a")=.T. .AND. ('a'="abc')=F.
IF row <=23
@ row-1, (80-LEN())2-2 TO;

row+1, (80-LEN(j))/2 + LEN(j) + 1 DOUBLE
ENDIF
@ row, (80-LEN(j))/2 SAY j
*: EOF: ENBOX.prg

Figure 3

24 INGENIERIA

Note that every quoted line appears twice in
TEXTFILE, as a result of using option "-add"
when invoking LNGrep. The first line contains
the empty language annotation LNG(). The
second line is the source line as it appears in the
source file, butitincludes the default annotation,

LNG(us) in this case. When options "+add"
isn't specified in the command line, then
LNGrep will not duplicate lines: this is very
useful when running LNGrep on an already
annotated source file.

*=—> File [SHORT.PRG] && LNG(us)
[[2:1]
xCustNo="" && LNG()

xCustNo="" && LNG(us)

] (3:1)

@ 12,20 SAY "Customer Code" get xCustNo && LNG()

@ 12,20 SAY "Customer Code" get xCustNo && LNG(us)

[l [5:1)

@ 14,20 SAY "Hello, World!" && LNG()

(@ 14,20 SAY "Hello, World!" &é& LNG(us)

] [0:0]
*=> File [ENBOX.PRG] && LNG(us)

] : [8:1]
JFIF("=str,”*, SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG(}
JFEIF("=str,"*, SUBSTR(LTRIM(RTRIM(str)), 1,75)) && LNG(us)

] {0:0]

Figure 4
*=—> File [SHORT.PRG] && LNG(us)
[l [2:1]

XxCustNo="" && LNG()

[1

(]

@ 12,20 SAY "Customer Code"
@ 12,20 SAY "Cdédigo del Cliente" get xCustNo && LNG(sp)

[3:1]
get xCustNo && LNG(us)

[1
[1

[5:1]
@ 14,20 SAY "jHola, Mundo!" && LNG(sp)
@ 14,20 SAY "Hello, World!" && LNG(us)

[0:0]
*==> File [ENBOX.PRG] && LNG(us)

[8:1]

1

JEIF("=str,"”*, SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG()

1

[0:0]

Figure 5

An annotation is just a comment at the end
of aline that tells the LNGrep system which
language the line corresponds to. Hence, all the
lines that have the LNG(us) annotation are writ-
ten in the English language; those annotated with
LNG(sp) are written in Spanish. As many lan-
guage versions as required can reside in the
same source file (The program limit for
LNGrep is 100 languages, which is more than
anybody will ever need).

Totranslate the strings to another language,
all the lines in TEXTFILE should be carefully
edited. In this example, the result of editing
TEXTFILE yields what's shown on Figure 5.

Note that every first line in a string group
is edited to obtain its foreign-language
translation. Also, the empty annotation
LNG() is substituted by the foreign language
annotation, which is LNG(sp) in this example.

DI MARE: LNGrep: Easy and secure xBase...

Some lines that don't need translation are left alone
inthe string group, and their annotation is LNG().

The LNGgrep programs are smart enough to
distinguish correctly each group of lines, allowing
for flexible editing. For example, it doesn't matter
whether the LNG(us) annotation appears as the first
one in the group (as is the case in the "Customer
Code"line), or in any other position ("Hello, World!™).

Whoever does the translation works only in
TEXTFILE, and not the source files. This is very
useful because anon programmer can perform the

25

translation, without ever handling the original
source files. Also, it makes easier tocheck the
translation, editing or printing TEXTFILE.
However, it is very important that the line
numbers in the line separators []---------
[nn:mmm] notbe changed. These numbers are
used by program LNGapply to replace lines
in the source files with the translated ones from
TEXTFILE.

It is valid to delete a whole group of lines
from TEXTFILE altogether, but it is always
necessary to avoid deleting any of

* : SHORT.prg - Sample program
xCustNo =" " && LNG()
@ 12,20 SAY "Customer Code"

read
* @.14,20 SAY "jHola, Mundo!"

CALL EnBox(xCustNo, 5)
*: EOF: SHORT.prg

* @ 12,20 SAY "Cédigo del Cliente" get xCustNo && LNG(sp)

@ 14,20 SAY "Hello, World!" && LNG(us)

get xCustNo && LNG(us)

&& LNG(sp)

* EnBox.prg
PARAMETERS row, str

* - row < 23 is required

PRIVATE j

IF row <=23

ENDIF
(@ row, (80-LEN(j))/2 SAY j
*: EOF: ENBOX.prg

* This procedure centers "str” at "row” on the screen
* and surrounds it with a double border box.

j=IIF("=str,”* SUBSTR(LTRIM(RTRIM(str)), 1,75)) && LNG()
* SET EXACT OFF => ('abc'="2')=T. .AND. (‘a=ab¢’)=F,

@ row-1, (80-LEN()}’2-2 TO:
row+1, (80-LEN(j))/2 + LEN(j) + 1 DOUBLE

Figure 6

the *===>FILE[] lines. The source files should not
be changed after TEXTFILE is produced with
LNGrep and before they are changed with LNGapply.

Program LNGapply should be used to include

the changes in the source file:
C:\> cd \prg\source
C\PRG\SOURCE> LNGapply TEXTFILE LNG(us)

After applying the translated lines from
TEXTFILE, the contents for SHORT.prg and
ENBOX.prg will be what it's shown on Figure 6.

LNGapply doesn't need any wildcard file
designators because the source file names ap-
pear within TEXTFILE in every FILE line:

*=> File [SHORT.PRG] && LNG(us)

*==> File [ENBOX.PRG] && LNG(us)

LNGapply scans TEXTFILE until it finds
a group of translated lines, as delimited by the
line separators []------—-[nn:mmm].

The numeric value "nn" is the number of
the first line of the group of lines that should

26 INGENIERIA

be substituted by those in TEXTFILE. The line
numbers "nn" appear in increasing order within
TEXTFILE. The value "mmm" is the number of
lines that should be removed from the source file.
The first time that LNGapply is run, number "mmm”"
is one (1), because the source files don't have any
language annotations yet. There are no line counts

for TEXTFILE; only for the source files. For
example, the line separator []------ [7:2] means to
LNGapply to substitute two [nn:2] lines in the
source file, beginning at line number seven
[7:mmm)], by those that appear below the line
separator. Any group of lines can have one or more
lines.

read

*: EOF: SHORT .prg

*: SHORT.prg - Sample program
xCustNo="" && LNG()
@ 12,20 SAY "Cdodigo del Cliente" get xCustNo && LNG(sp)
*@ 12,20 SAY "Customer Code”

@ 14,20 SAY "{Hola, Mundo!" && LNG(sp)
*@ 14,20 SAY "Hello, World!"
CALL EnBox(xCustNo, 5)

get xCustNo && LNG(us)

&& LNG(us)

Figure 7

As expected, there are two lines instead of
one for each of the lines that have been
translated. This is the result of applying the
translations to the source files. The first line has
the English language annotation LNG(us), and
the second one is the translation of the first one.
This later line is commented out, and has the
Spanish annotation LNG(sp). In Figure 6 the
active language version is English.

Suppose now that it is required to obtain the
Spanish version of the source files. This is where
program LNGswap is used:

C:\>cd
C:\> LNGswap c:\prg\source* prg Ing(sp)

Figure 7 shows how program LNGswap
changed SHORT.prg, to make the Spanish version
the current one. Note that LNGswap can work in
other directories besides the current. As the

C:\> cd \prg\source

ASCII differences between

C:\PRG\SOURCE> fc short.bak short.prg
c:\prg\source\SHORT.BAK and c:\prg\source\SHORT PRG

Replace lines 3-4 in ¢:\tmp\SHORT.BAK
< @ 12,20 SAY "Customer Code"
< *@ 12,20 SAY "Cédigo del Cliente" get xCustNo && LNG(sp)

with lines 3-4 from ¢ Mmp\SHORT PRG
> @ 12,20 SAY "Cédigo del Cliente" get xCustNo && LNG(sp)
> *@ 12,20 SAY "Customer Code"

Replace lines 6-7 in ¢:tmp\SHORT.BAK
< @ 14,20 SAY "Hello, World!" && LNG(us)
<*@ 14,20 SAY "jHola, Mundo!" && LNG(sp)

with lines 6-7 from c:\tmp\SHORT.PRG
> @ 14,20 SAY "jHola, Mundo!" && LNG(sp)

> *@ 14,20 SAY "Hello, World!" && LNG(us)

get xCustNo && LNG(us)

get xCustNo && LNG(us)

Figure §

~ contents of ENBOX.prg are the same for both
.;the English and the Spanish version, LNGswap
~ doesn't change it.

The only difference between this version of
ljSHORT.prg and the previous one in Figure 6,
~ which got saved under the name SHORT .bak by
LNGswap, is that in this one every annotated first
linehas the Spanish language annotation LNG(sp).
~ Figure 8 is the result of running the DOS
command FC [File Compare] to show the differ-
 ences between SHORT.prg (the "LNG(sp)"
version) and SHORT.bak (the "LNG(us)" ver-
sion).

‘ Why didn't LNGswap change file
- ENBOX.prg? Theanswer is simple. As itcan be
~ seen in Figure 6, the only annotated line in
~ ENBOX.prg is this one:

* =IF(=str,* SUBSTR(LTRIM{RTRIM(str)),1,75)) && LNG()

The annotation of this line is LNG(), the
language-independent annotation. This means
- that no matter what the current active language
- is,aline with an LNG() empty annotation will
-~ notbe changed by LNGswap. Neither will it ever
~ beincluded in a TEXTFILE by LNGrep.

A (minor) nuisance of this scheme is that
- some of the lines get shifted one space to the
' right. For example, if the source file has the
~ following left-justified line:

]@4,20 say "Hello, World!"

DI MARE: LNGrep: Easy and secure xBase ... 27

then after annotation and translation it be-
comes the following:

@ 14,20 say "Hello, World!"
*@ 14,20 say "{Hola, Mundo!" && LNG(sp)

An extra space at the beginning of the line is
inserted to make room for the comment character
'*'. One way around this is to shift every line in
the source file one space to the right. However,
it will be easy to find many software project
managers that won't agree with this correction.

The last option I added to LNGrep is "-new".
The first time LNGrep is run on a set of files, the
option "-add" is used to have LNGrep duplicate
each line in TEXTFILE. But when maintenance
is performed on a module, it is nice to have
LNGrep output to TEXTFILE only the newer
lines to translate. These are lines that have xBase
strings in them, but that don't have a language
annotation. When option "/new" is specified in
the command line, only strings that don't have
language annotations are written into TEXTFILE.
Hence, after the very firsttime, itis usual to invoke
LNGrep as follows:

C:\> LNGrep c:\prg\source*.prg Ing(sp) -new >TEXTFILE

When maintaining the source programs,
many times it can become quite cumbersome to
examine the annotated source file. Program
LNGclean can help here. LNGclean canremove
all the annotated lines from a source file, leaving
only those for the chosen language. To store in
file "short.sp" a cleaned-up Spanish version of

ok ok ok ok ok ok ok Rk ok ok

* SHORT.PRG *

8 3 koo ek K

xCustNo=""

read

*: SHORT .prg - Sample program
@ 12,20 SAY "Codigo del Cliente" get xCustNo
@ 14,20 SAY ";Hola, Mundo!"

CALL EnBox(xCustNo, 5)
*. EOF: SHORT .prg

Figure 9

28 INGENIERIA

SHORT..prg, the following command can be used:
C:\> LNGclean c:\prg\source\short.prg Ing(sp) >short.sp
The result of this command is shown in Figure 9.

The English version of SHORT.prg can be
obtained just as easily. Figure 10 shows the result
of using the command:

C:\> LNGclean c:\prg\source\short.prg Ing(us) >short.us
that leaves in C:\short.us the English version of
SHORT.prg.

LNGclean always writes each file name
before its contents, surrounded by an asterisk box.
LNGclean can be used to do away with all the
annotations, but a batch (.bat) file is needed for
that. LNGclean does not require the source file
to be in any particular language; it will always
extract the version requested in the command line.
LNGclean also accepts wildcards.

LNGclean can be used to compare the cleaned-
up version of the program with its original source
code. Ifthey are different, then amistake has crept
in to the translation process. If not, for sure the
original version of the program is intact. The DOS
command FC can be used for this, and often it will
help to use the "/w" option to have FC ignore

whitespace:
C:\> cd \prg\source
C:\PRG\SOURCE>LNGclean short.prgIng(us)>short.us
C:\PRG\SOURCE> FC short.prg short.us /w

ok ook ok ok o kK

* SHORT.PRG *
o ok K K K K ok R
*: SHORT .prg - Sample program
xCustNo=""
@ 12,20 SAY "Customer Code" get xCustNo
read
@ 14,20 SAY "Hello, World!"
CALL EnBox(xCustNo, 5)

*: EOF: SHORT prg
Figure 10

A minor amount of error handling has been
implemented in the LNGrep programs. For ex-
ample, LNGswap will use the current active lan-
guage if it doesn't find the language annotation
from the command line in a string group. Suppose
that a segment of code contains the following:

xCust = "Enter Customer Code" && LNG(us)

If it is requested that LNGswap produce the
French version for this segment of code, the result
will be the following:

xCust = "Enter Customer Code" && LNG(fr)
*xCust = "Enter Customer Code" && LNG(us)

LNGswap used the English version in place
of the French one because it found no French
annotation in the string group.

All the programs in the LNGrep-system ac-
cept wildcards, where appropriate. When no
language annotation is specified, then LNG(us)
is used as a default.

ADVANTAGES AND DISADVANTAGES

It is not clear that the LNGrep approach is the
best one to translate programs. The main short-
comings of this system are the following:

[A] The source code becomes "stained" with
language annotations.

[B] Many lines appear more than once in the
source code, which makes it more difficult
to read and maintain.

[C] If aline number in the line separators []----
---—[nn:mmm] is changed or deleted in
TEXTFILE, then the result can be a
seriously damaged source file.

[D] LNGrep is slow.

[E] Multiple statement lines are not supported.

[F] The source code must be recompiled to
obtain each language version, this is, differ-
ent executables are required for each lan-
guage version.

Complaint [A] is, to a certain extent, solved
with the use of program LNGeclean. The following
commands can do the trick:

C:\> LNGswap c:\prg\source*.prg Ing(us)
C:\>LNGeclean c:\prg\source*.prg Ing(xx) >clean.all

The first line makes the current language

LNG(us). The second one leavesin file "clean.all"

i)

all cleaned-up sources for language "xx", but as
there are no LNG(xx) annotations anywhere, then
the one used is the English version that was just
made current by LNGswap. Some further work
Jis necessary to manually split "clean.all" to obtain
 all the original sources.

DI MARE: LNGrep: Easy and secure xBase ... 29

Is there a way to "clean-up” a source file to
work on it, edit it, and then reapply the transla-
tions? The answer is no.

Maintenance must be done on the "stained"
source file. This is why LNGclean is a solution,
to a "certain extent".

@echo off

if (%2)==() goto help
if not (%3)==() goto help

copy %] bak

copy

goto end
‘help

:end

:: BatLNG.bat => Intermediate step to LNGclean many files
echo The original files will be copied to directory BAK

if not exist bak\null md bak

LNGclean %1 %2 >E:\RamDisk\t.bak

E:\RamDisk\t.bak %]l
del E:\RamDisk\t.bak

echo USAGE BatLNG Ingfile[.ext] LNG(language)

C:> for %a in (*.prg) do call BatLNG %a Ing(us)

_ A smart programmer could use programs like
IFF3 capable of finding the difference between
ﬂ ofiles to modify a third file according to these
differences, to work on a copy the source file, edit

it, and then make the changes back in the original

file:

- C\>cd \prg\source

- C\PRG\SOURCE> LNGclean short.prg LNG(us) >tmp.prg
C:\PRG\SOURCE> edit tmp.prg
CAPRG\SOURCE=> compile SC00 tmp.prg
C:\PRG\SOURCE> edit tmp.prg
C:\PRG\SOURCE> diff3 tmp.prg short.prg ...
C\PRG\SOURCE> copy tmp.prg short.prg

C:APRG\SOURCE>LNGrep /new short.prg >TEXTFILE
This requires, of course, a "most careful” pro-
grammer (I was never myself confident on the
capabilities of DIFF3).

Figure 11 is the BatLNG.bat file that can be
ed to clean-up a bunch of files. BatLNG must be
invoked from the command prompt using the DOS
FOR command, as shown on the lower part of
ame Figure. BatLNG applies LNGclean to a file,
and leaves a backup of the original source in the
BAK directory. Even though LNGclean accepts
‘wildcards, it binds everything into a single file.

Figure 11

I minimize both complaints [A] and [B]
arguing that most translated literal strings appear
in @ GET SAY commands, and those are never
difficult to understand.

Complaint [C] is difficult to overcome. It
would require heavy machinery to maintain the
source code synchronized with the translations.
Even though the LNGrep programs have some
error detection built into them, any (dumb) opera-
tor can create havoc. Those who edit the transla-
tion TEXTFILE should be advised to think ahead
when global replacements are performed, or when
huge blocks of data are deleted.

It is particularly important not to make a
numeric global string translation, as in
subst(1==>2,noask), because many line separa-
tors will fit the pattern. For example, []---[1,1]
becomes []--[2,2]! Also, it isn't wise to move
around blocks of code. Probably it is easier to
require every translator to be a programmer.

Complaint [D] can be overcome with money.
Just geta faster computer. RAM is not an issue. It

30 INGENIERIA

is cheaper to re program the function
LNGtools.Get_Line(), but then a program with a
very long line could be damaged. Here "long”
means "a line with more than 250 characters”.

Complaint [E] cannot be overcome, because
xBase languages don't allow comments within state-
ments. For example, the following code will not

compile:
ALFA =;
"radio boo-boo" +; && LNG(sp)
* radio gaga" +; && LNG(us)

ALFA + ALFA

This is a problem in the language implemen-
tation. The only solution I have found is to use
intermediate variables:

temp = "radio boo-boo" && LNG(sp)
*temp = "radio gaga" && LNG(us)
ALFA =temp + ALFA + ALFA

I know that this isn't good enough, because
only a programmer can change the original source
code into something that LNGrep can process.
Should you find a better trick, please let me know,

Complaint [F] can be overcome with a
completely different approach. One way is to use
aResource Compiler to maintain a database with
strings that getread atrun time; another is to write
a program than changes the strings stored in the
object file (I believe both approaches have been
implemented, at least for the C language). People
have come up with other variations on theses ideas,
but the LNGrep approach seems cleaner, and far
easier to implement. The LNGrep system should
be good enough for most small programming shops.
Small is beautiful.

The advantages of this approach are the fol-
lowing:

[A] There is only one source code. With Source
Control Systems, such as Tlib or PVCS, it
is possible to maintain several versions of a
program. However, the fewer files a system
has the easier itis to manipulate, and this is

the approach supported by LNGrep. To ob-
taina different language version you justrun
LNGswap on the source code and recompile.

[B] The original source code is not manipulated
by the person that does the translation. Often
those who can translate neatly cannot ma-
nipulate directly the source files. The
LNGrep systems allows the division of labor
that reduces the cost of the translation.

[C] It's easy to know what has been translated.
Just run LNGrep without option "+new" on
the original source file to get a complete
TEXTFILE that contains all the translated
lines. Analternative istouse GREP to extract
every line that has an annotation:

C:APRG\SOURCE=> GREP -n+ -i LNG(*.prg
(Note the absence of the closing parenthesis ")").

[D] Lines that need no translation can be anno-
tated with LNG(). This prevents many errors
that otherwise could creep in when manipu-
lating a lot of data.

[E] LNGrep is free!

There are more advantages to the LNGrep
system than disadvantages, which means that you
should start using it right away. Should you find
a bug, just contact me and I will try to fix the
problem.

As usual, the use of the LNGrep system is at
your own risk!

IMPLEMENTATION

Iimplemented this programs using the Borland
Turbo Pascal programming language. I chose
Turbo because it's a language that I have mastered
through the years. For my programming courses at
the University I use Turbo. Turbo was natural for
me to use, but other languages are just as valid for
a project like this.

The LNGrep system consists of four programs.
The source code for each program is in a file that
has the same name as the program:

- LNGapply.pas <=>
-LNGrep.pas <=>
-LNGswap.pas <==>
-LNGclean.pas <=>

LNGapply.exe
LNGrep.exe
LNGswap.exe

LNGclean.exe

Allthe programs share a library of tools that
| developed for this project called LNGtools.pas.
e important components of LNGtools are the
llowing:
=> TYPE Tokenized_T, used to parse all input
lines that contain an xBase string.

<=> OBJECT TString_Group, used to store all
~the input lines that belong to the same
string group. In every program, the vari-
able SG contains all the lines inthe current
string group.

<=> String handling routines, like
~ RTrim(STRING):STRING, are needed to
- joggle input lines.

input lines and figures out whether they
have an LNG() annotation, and whether or
not they are a comment line.

parse the command line argument. It relies
a lot on System.ParamStr().

ward. There is a main loop where each program
line gets read, until the end of file is reached. For
line, it is decided whether it belongs to the
it string group, in which case it getsadded to
or ifitbelongs to a new group, then the old one
is processed out and anew one isbegun. Some
care must be taken because there are several
to be handled, but there is nothing special in
ode.

DI MARE: LNGrep: Easy and secure xBase ... 31

I have tried to document fairly well the code,
Just in case you need to understand it. The only part
where I was forced to use OOP is when 1 imple-
mented OBJECT TString_Group, because using
regular procedural programming there would had
forced me to invent many unnecessary names. All
the programs can be compiled with Turbo Pascal
v5.5, or a later version.

CONCLUSION

As economies become more dependent on
each other, the language barrier becomes more of
a problem. Systems like LNGrep can help to
overcome this problem, and increase productivity
throughout.

ACKNOWLEDGMENTS

My brother Luis Di Mare came up with the idea
of LNGrep. Later, my friends Enrique Bermudez
and Joseph Bannister provided valuable criticism
and editorial suggestions. Lastly, this document
was written using Eric Meyer's superb editor
VDE.com, which he distributes as shareware. For
most purposes, it is better than the commercially
available mega-monsters.

BIBLIOGRAPHY

[1] Castillo, JoAn: "ANSI Standards Committee
makes progress"; Data Based Advisor; July
1993; pg-76.

[2] Petzold, Charles: "Unicode, Wide Charac-
ters, and C"; PC Magazine; Vol 12 #3; Nov-
9, 1993; pg 369.

[3] Plauger, P.J.: "The header <locale.h>"; The C
Users Journal; vol 9 #3; March 1991; pg 7.

[4] Plauger, P. J.:"The Standard C Library";
Prentice Hall; 1991.

