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Abstract

A variational principle for several free boundary value problems using a relaxation
approach is presented. The relaxed Energy functional is concave and it is defined on
a convex set, so that the minimizing points are characteristic functions of sets. As a
consequence of the first order optimality conditions, it is shown that the corresponding
sets are domains bounded by free boundaries, so that the equivalence of the solution
of the relaxed problem with the solution of several free boundary value problem is
proved.
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Resumen

Se presenta un principio variacional para varios problemas de valores en fronteras
libres usando un enfoque de relajamiento. El funcional de Enerǵıa relajado es cóncavo
y está definido en un conjunto convexo, de tal forma que los puntos que minimizan
son funciones caracteŕısticas de conjuntos. Como consecuencia de las condiciones
de optimalidad de primer orden, se muestra que los conjuntos correspondientes son
dominios acotados por fronteras libres, de manera que se prueba la equivalencia de
la solución del problema relajado con la solución de varios problemas de valores en
fronteras libres.
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1 Introduction

During the last decade there has been an active research in two fields: shape optimization
and free boundary value problems. With the help of variational principles, it seems clear
now that at least for some cases, there are common results for both subjects. Once an
“energy” functional Ω → E(Ω) depending on the shape of the domain Ω is defined, if there
exists a domain Ω * which minimizes the energy, it can be shown under suitable regularity
assumptions, that the boundary of the optimal domain can be interpreted as the solution
of a free bounday problem as a consequence of first-order optimality conditions. One of the
main contributions of the variational analysis during the last years has been the well-known
paper by Alt-Cafarelli [1], but other contributions have appeared recently (see for instance
the article by J.P. Zolesio [36]). The work developed by the shape optimization community
has been mainly classified in two directions: one is the work done on shape sensitivity
analysis, where gradients of the domain functionals have been calculated (see works by
Delfour [7], Murat-Simon [23], Pironneau [25], Simon [27], Fujii [10], Sokolowski-Zolesio
[28], Zolesio [34]). On the other side, the research on relaxation methods allows to work
within more general functional space frameworks. Those have been studied, among others,
by Kohn-Strang [21] , Buttazo-Dal Maso [3], Kohn [20], Murat-Tartar [24], Gonzales de Paz
[13], [15]. This approach has been used mainly to obtain existence results, but generally,
what we obtain are some kind of “generalized domains”. Additional regularity conditions
are imposed in order to obtain “classical domains” (cf. for example D. Chenais [6]). It
seems clear now that, so far we deal with some kind of energy functionals, (which is not
always the case with shape-optimization problems) and in case the relaxation factor plays
the role of a control-coefficient for other terms than the quadratic gradient-term, then a
homogeneization phenomenon does not occur, but instead a free boundary value problem
is solved. An important fact that it has not been remarked elsewhere, as far as the author
knows, is that the correponding energy functionals are concave related to the relaxation
term (control coefficient). The concavity structure provides the “good” structure in order
to obtain existence results and differentiability, as there is no need to restrict ourselves
to sets of characteristic funtions; they appear as a consequence of the concavity. This
allows one to use more general function sets, and apply well-known compacity results for
topological vector spaces. Similar problems have been treated within the control-theory
framework by R. Tahraoui [29].

Our goal in this paper is to present a relaxation approach for the study of free boundary
value problems and free interface boundary problems which seems to describe a general
variational principle. Generallly, a condition of the Dirichtlet-type is given on the free
boundary and another condition concerning the normal derivative of the function is pre-
scribed, (a Neumann or Bernoulli condition). For the case of interface boundaries, the
additional condition on the normal derivative takes the form of a “transmission” condi-
tion. By means of this approach, introduced by González de Paz [13], a constructive proof
for the existence of optimal domains is presented, in the sense that a concave functional is
given whose minimizing elements describe the domain or subdomains bounded by the free
boundary. Under certain restrictions, the homogeneization process does not take place
and we obtain “classical” domains. As the functional is differentiable, a further study of
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the necessary conditions of optimality using the techniques of shape derivative calculation
developed by J.P. Zolesio [36] are used for the study of the boundary conditions on the
free interface boundary.

We shall deal with two main applications: firstly we show how this relaxation ap-
proach can be used for the study of steady vortex flow problems, this is a rather classic
free boundary value problems, but it allows to present the main features of our approach.
Secondly, we study the shape optimization of electrostatic condensators, in the sense that,
given one of the boundaries of the condensator, we look for the other one in order to max-
imize the corresponding capacity. This kind of problems have found some applications in
heat-conduction, electrochemistry, fluid mechanics and plasma physics. In order to apply
the relaxation approach, we have to use some kind of penalization or regularization, de-
pending on the case we are dealing. In a second stage, we study the case where the normal
derivative of the solution of the partial differential equation is related to the curvature of
the free boundary, we shall call this conditions of the non linear Bernoulli-type. This can
be handled within our framework by adding a new term to the functional. We show that
the main results remain valid, and in fact, the new problem can be regarded as a penaliza-
tion of the original one. It becomes clear that this framework allows a unified perspective
on several free boundary problems treated in the literature separatedly. Furthermore, it is
well adapted for the numerical analysis, as it has been remarked solving particular cases
(cf. [17]).

A further application is the optimal design of composite membranes, in the sense that
an optimal distribution of two materials is calculated so that the least eingenfrequency
(the fundamental frequency) is maximized. This was presented in [16].

2 Statement of the problem

Let D ⊂ R2 be a starshaped, bounded domain, whose boundary Σ is a Lipschitz curve.
Let Ω0 ⊂ D be a starshaped, conneted subdomain, with Lebesgue-measure A0, whose
boundary Γ0 is Lipschitz-continuous. Furthermore let be given a bounded, strictly positive
function f defined on D, and let us denote as C the convex set of positive, bounded
functions µ such that

0 ≤ µ ≤ 1 almost everywhere in D (1)
∫

Ω0

µdω = A0. (2)

Besides, for a given constant A < meas(D):
∫

D
µdω = A0 +A. (3)

We remark that conditions (2) and (3) are equivalent to

µ = 1 a.e. on Ω0

∫

D0

µdω = A for D0 = D − Ω0.
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Following the definitions introduced by Kinderlehrer-Stampacchia [19], we define for a
fixed, nonnegative constant c0 the convex set:

Kc0 =
{
ν ∈ H1

0 (D) | µ ≥ c0 on Ω0

}

where H1
0 (D) denotes the usual Sobolev space and the inequality is understood in the

sense of H1
0 .

For a fixed µ ∈ C, we define on the Sobolev space the functional

v → Jµ(v) =
1
2

∫

D
|∇v|2dω −

∫

D
µfvdω.

THE PROBLEM P (µ): The minimization of v → Jµ(v) on K is now a classical subjet, so
that for each µ ∈ L∞(D,R+) there exists a uµ ∈ K such that the functional is minimized
and uµ is the weak solution of the following boundary value problem P (µ) :

−∆uµ = µf in D0 = D − Ω0 (4)

uµ = c0 on Ω0 (5)

uµ = 0 on Σ. (6)

Remark 2.1 We recall that uµ ∈ C1,1
loc (D)∩H2(D) is a positive, superharmonic function.

2.1 The optimization problem related to µ

The functional Φ defined by

µ→ Φ(µ) = Jµ(uµ) = min
u∈K

Jµ(u)

has been studied by Gonzalez de Paz in the framework of applications to shape domain
optimization (cf. [13], [15]). We have studied the minimization of Φ in C ⊂ L∞(D,R+)
where C is the convex set defined by the constraints (2.1), (2.2) and (2.3).

Theorem 2.1 The mapping µ→ Φ(µ) is σ(L∞, L1)-continuous on C ⊂ L∞(D,R+).

proof: First we remark that using a-priori majorations, we can prove that there exists a
ball U ∈ H1

0 (D) such that for every µ ∈ C, the corresponding solution uµ ∈ U . Note that
using integration by parts we have:

Φ(µ) = −1
2

∫

D
µuµfdω.

Let us take a sequence (µn)n which converges to a µ̃ ∈ C in the topology cited above. For
the sequence of the corresponding solutions (un)n and ũ we have for every test-function
ϕ:

(∇(un − ũ),∇ϕ) = (fµn − fµ̃, ϕ).
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This implies that un
σ→ ũ in H1

0 (D) and due to the Rellich-Kondrasov theorem, we
have also strong convergence in L1(D). We write now:

〈µn, fun〉 − 〈µ̃, f ũ〉 = 〈µn − µ̃, fun〉 + 〈µ̃, fun − fũ〉.

The brackets describe the (L∞, L1)- duality. In the right side of the identity, the second
term converges to zero due to the strong convergence in L1(D), for the first one we
recall that on the unit ball of L∞ the σ(L∞, L1) convergence is equivalent to the uniform
convergence on the strongly compact subsets of L1(D). As every un is in the ball U ,
and this is L1–compact as a consequence of the Rellich-Kondrasov theorem, this term
converges also to zero.

Remark 2.2 The above theorem can be also interpreted the following way: the corre-
sponding Green operator defined on the set C ⊂ L∞(D,R+) is continuous related to the
σ(L∞, L1) and the norm topology in H1

0 (D) respectively.

Remark 2.3 The set C is σ(L∞, L1)- compact and it has been shown that the application
Φ is also continuous for the same topology, so that a minimizing element µ∗ exists. Besides,
as the lower enveloppe of affine functions relative to µ, it is concave and furthermore,
differentiable, the first implies that among the minimizing elements there are extremal
points of C, wich are characteristic functions of sets with measure A+A0. So there exists
µ∗ = χΩ̃ with Ω̃ = Ω0 ∪ Ω. The study of the necessary conditions of optimality furnishes
the description of the boundary Γ of Ω related to D0 as a free boundary.

We remark that, if we define for a positive W ∈ L1 :

ΦW (µ) = Φ(µ) + 〈W,µ〉 (7)

where the brackets describe the (L1, L∞)- duality, the functional ΦW remains σ(L∞, L1)-
continuous and concave so that the main results remain valid, i.e. there exists an element
µ∗ ∈ C minimizing ΦW such that µ∗ = χΩ∗ for a set Ω∗. In physical applications, the term
〈W,µ〉 describes a potential energy, so that W might be a gravitational or electromagnetic
potential function, hence harmonic.

2.2 Necessary conditions of optimality

Similar as in Gonzalez de Paz [13], the functional ΦW is the lower enveloppe of a family of
affine functions, hence concave, it follows as a consequence of a theorem due to Valadier
[32]:

Theorem 2.2 The functional ΦW has a weak derivative in the sense of Gateaux and its
weak gradient is: ∇ΦW (µ) = W − fuµ where uµ ∈ H1

0 (D) is the corresponding solution
of the boundary problem P (µ). So that for every α = µ − µ∗, with µ ∈ L∞(D,R+) and
µ∗ ∈ K solution of P (µ∗) we have:

Φ′
W (µ∗; a) =

∫

D
(−u∗f +W )αdω. (8)
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sketch of the proof: Recall that due to the definition of ΦW , this mapping is the
lower enveloppe of affine functions related to µ, thus it is a concave function. It follows
from a theorem due to Valadier [32] (see also an earlierversion in Pschenichnii [26]):

Φ′
W (µ∗;α) = max

u∈Γ(µ∗)
〈W − fu, α〉 (9)

where Γ(µ∗) =
{
u ∈ K/1

2‖∇u‖
2 + 〈W − fu, µ∗〉 = Φ(µ∗)

}
. The energy functional is strictly

convex on K, so it follows that the set Γ(µ∗) has only one element, namely u×, this means:

Φ′
W (µ∗;α) = 〈W − fu∗, α〉. (10)

Theorem 2.3 For the optimal set Ω∗ there exists a constant λ such that

Ω∗ = {x ∈ D0|f(x)u∗(x) −W (x) > λ} . (11)

Let the functions f and W be continuous, then the boundary Γ of the set Ω∗ related to D
has the property: Γ ⊂ Sλ, where

Sλ =
{
x ∈ D0|f(x)u×(x) −W (x) = λ

}
.

Furthermore, if f is a constat and W a harmonic function, then we have equality in the
last relation.

proof: Classically, the first-order necessary condition of optimality states for every di-
rection α = µ− µ∗ with µ ∈ C :

〈W − fu∗, a〉 ≥ 0 (12)

and for the case of characteristic functions:
∫

Ω∗
(W − fu∗)dω ≤

∫

Ω
(W − fu×)dω (13)

When minimizing the linear functional µ→
∫
D(W − fu∗)µdω on C, it follows that there

exists a Lagrange multiplier related to the integral constraint (3) such that

f(x)u×(x) −W (x) > λ implies µ∗(x) = 1 (14)

f(x)u∗(x) −W (x) = λ implies µ∗(x) ∈ [0, 1] (15)

f(x)u×(x) −W (x) < λ implies µ∗(x) = 0. (16)

If and W are continuous, the inclusion Γ ⊂ Sλ is a classical fact. If f is a constant and
W a harmonic function, the gradient is a superharmonic function, so it follows the other
inclusion (see [13]).

Furthermore, as u∗ ∈ H2(D0)∩C1,1
loc , the partial differential equation is verified in the

a.e. sense, so it follows that the level set Sλ = {x ∈ D0|f(x)u∗(x) −W (x) = λ} has zero
Lebesgue measure.

Remark 2.4 In the case W = const., it can be interpreted as a Lagrange multiplier
related to the measure constraint (3). In this case constraint (3) would be redundant if it
were given explicitly.
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3 An application in steady vortex flow

Let D ⊂ R2 be a bounded domain, shaped as a stripe with height A and length 2L, in
fact the domain we have in mind is the cartesian product [−L,L] × [0, A]. We note its
boundary as Σ. Let Ω0 ⊂ D be a domain with a smooth boundary Γ0 describing a body
in the domain D, which is occupied by an ideal fluid. We shall assume that the center of
the stripe lies somewhere in Ω0. For D0 = D − Ω0 we define η such that

∆η = 0 in D0 (17)

η = 0 on Γ0 (18)

η = y on Σ, (19)

the function η is the stream-function for a normalized irrotational flow in D0.
Recall that the vorticity field ~w = ∇× ~v can be written in this case as ~w = ζ~iz where

ζ is called the vorticity function and ~v = (∂ψ̃∂y ,−
∂ψ̃
∂x ) for some stream-function ψ̃. Finally

we have that:
−∆ψ̃ = ζ in D. (20)

This motivates the following definition: for a given positive, bounded function ζ we
define on the Sobolev space H1

0 (D0) the functional

ψ → Jζ(ψ) =
1
2

∫

D0

|∇ψ|2 dx−
∫

D0

ζψdx. (21)

Classically, this functional has a minimizing element in H1
0 (D0) which is a weak solution of

the Poisson equation (4) defined above. Furthermore, we are able to define on L∞(D0,R+)
the functional:

ζ → Φ(ζ) = min
ψ∈H1

0

Jζ(ψ). (22)

We remark that for ψζ ∈ H1
0 (D) minimizing element for a fixed ζ, when applying

integration by parts, we obtain for the kinetic energy of the flow:

E(ζ) =
1
2

∫

D0

|∇ψζ |2 dx =
1
2

∫

D0

ψζζdx = −Φ(ζ).

Besides, following the definition presented by Turkington [31] the vortex impulse (i.e. the
total impulse required to generate the flow from rest), is given by the linear functional:

ζ →
∫

D0

ηζdx. (23)

We define now for a positive scalar W the functional

ΦW (ζ) = Φ(ζ) +W

∫

D0

ζηdx. (24)

In fact, W describes the speed of the fluid on Σ in the case there is not a vortex. For
the case that the stripe is very long related to the body Ω0, this means that far from the
obstacle the modulus of velocity of the fluid tends to the constant W . Furthermore we
define as C the convex subset in L∞of functions ζ with the following constraints:
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1. For a fixed β
0 ≤ ζ(x) ≤ β a.e. in D0 (25)

the constant β is related to the vortex intensity.

2. For a fixed, positive constant Γ, which describes the total circulation of the vortex:
∫

D0

ζ(x)dx = Γ (26)

As a technical condition which will be explained in the next section, we assume:

Γ
β

≤ meas(D0). (27)

Other authors have studied the maximization of the functional ζ → E(ζ) by using rear-
rangemensts of functions. Here our aim will be to study the minimization of ΦW on C
using Convex Analysis techniques.

Theorem 3.1 The functional ΦW is concave and σ(L∞, L1)-continuous, so that there
exists an element ζ∗ ∈ C such that

ΦW (ζ∗) = min
ζ∈C

ΦW (ζ).

Remark 3.1 As the functional ΦW is concave, among its minimizing points there are
extremal points of C. They are of the form ζ = βχΩ where χΩ is a characteristic function
of a set Ω. Consequently, the constraints (26) and (27) become

meas(Ω) =
Γ
β

≤ meas(D0). (28)

Consequently, in order that the model be physically meaningful, the constants A and L
shall be assumed large enough in order that for a fixed Γ a broad range of values for the
parameter β may be feasible.

As a consequence of Theorem 2.3:

Theorem 3.2 Let ψ∗ be the solution for ζ∗. For the optimal set Ω∗ there exists a constant
k such that

Ω∗ = {x ∈ D0 | ψ∗(x) −Wη(x) > k} (29)

∂Ω∗ = {x ∈ D0|ψ∗(x) −Wη(x) = k} (30)

Remark 3.2 As we can see, the function ψ∗ ∈ H1
0 (D0) is a solution of the free boundary

value problem
−∆ψ∗ = β in Ω× (31)

∆ψ∗ = 0 in D0 − Ω∗ (32)

ψ∗ = k +Wη on ∂Ω∗ (33)



shape optimization and elliptic free boundary problems 75

Remark 3.3 Because of the known regularity of ψ∗, the gradient is continuous across the
free boundary ∂Ω∗. It is known that free boundaries of this type are locally Lipschitz (cf.
Kinderleherer-Stampacchia [19]) and even locally C1,α. So we may write as an additional
property:

(∇ψ∗)+ = (∇ψ∗)− on ∂Ω×. (34)

Here the plus sign denotes the limit at the boundary takes in the inward direction to Ω∗

and the minus sign denotes the limit in the outward direction.

Remark 3.4 We are able to define now the adjusted stream function:

ψ̃ = ψ× −Wη − k.

Note that in this case the stream function ψ̃ > 0 in the domain Ω∗ where we have the
vortex and ψ̃ = 0 on the free boundary ∂Ω∗. Besides,

−∆ψ̃ = ζ in D0 (35)

ψ̃ = −k on Γ0 (36)

ψ̃ = −Wη − k on Σ. (37)

The term u = ψ∗ − k can be interpreted as the perturbation of the stream function due
to the vortex.

4 Shape optimization problems in classical potential theory

We consider the classical capacity problem: given a doubly connected domain Ω ⊂ R2, we
denote by Γ0 and by Γ the interior and exterior boundary of Ω respectively, and by Ω0 the
domain bounded by Γ0. Classically, a potential function uΩ solves the Dirichlet boundary
value problem for the Laplace equation in Ω:

∆uΩ = 0 in Ω (38)

uΩ = 1 on Γ0. (39)

The capacity of the domain Ω0 related to Ω, noted CapΩ(Ω0) is given by:

CapΩ(Ω0) =
∫

Ω
|∇Ω|2 dω. (40)

Let be given the following isoperimetric condition: meas(Ω) = A with A a positive
constant. It is a well known result that the capacity is minimized when the shape of Ω
is a circular ring. We shall deal here with the question how to optimize the shape of Ω
in the sense that the capacity is minimized, when either the interior boundary Γ0 or the
exterior boundary Γ is a given, fixed Lipschitz curve.
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4.1 The exterior boundary case

We shall deal firstly with a relaxed problem: assume that the domain D is a ball of radius
R (i.e. D = BR), with its center located somewhere in the interior of Ω0. The radius R
is chosen “large” enough. For a given bounded f > 0 and fixed µ ∈ C we minimize the
functional u → Jµ(u) on K1. For a given f we consider the minimization of the energy
functional µ → Φ(µ) on C. As proved before, there exists a minimizing element µR ∈ C
and a corresponding solution: uR ∈ H1

0 (BR) of P (µR). From the necessary conditions of
optimality, in the case that f is constant and W is harmonic, applying Theorem 2.3 it
follows that µR is the characteristic function of a set

ΩR = {x ∈ BR | f(x)uR(x) −W (x) > pR}

and
Γ = ∂ΩR ∩D = {x ∈ BR | f(x)uR(x) −W (x) = pR} .

The constant pR may by interpreted as a Lagrange multiplier related to the area constraint
(3). Under the hypothesis that there exists a ball B0 large enough, so that for every R of
an increasing sequence converging to infinity: ΩR ⊂ B0, it has been shown in Gonzalez de
Paz [15]:

Theorem 4.1 In the case of an increasing sequence of radius R, such that its limit is in
infinity, there exists a sequence of minimizing elements (µR)R in L∞(R2,R+) and a corre-
sponding sequence of solutions (uR)R such that for the canonical extensions
ũR ∈ H1(R2) to the whole space we have:

ũR → u∗ strongly in H1(R2)

µR → µ∗ = χΩ∗ strongly in L2(R2)

where Ω∗ =
{
x ∈ R2 | u×(x) > 0 in the H1-sense

}
. Besides,

Φ(µR) → Φ(µ∗) =
1
2

∫

Ω∗
|∇u∗|2dω −

∫

Ω∗
fu∗dω +

∫

Ω∗
Wdω

such that for every R:
Φ(µ∗) ≤ Φ(µR)

and for Ω∗ regular enough:
−∆u∗ = f in Ω×.

Remark 4.1 In fact, the element u∗ ∈ H1(R2) solves a related free boundary value
problem studied by H. Alt and L. Cafarelli (cf. [1]) and we remark that, under certain
hypothesis concerning the regularity of the boundary Γ0 (namely, locally Lipschitz), those
authors have proved that the free boundary Γ is locally of the type C1,α and even locally
analytic.
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Remark 4.2 Again, let us consider the case W = 0 and f = constant. It has been proved
that in this case, the set Ω∗ cited in the Theorem above has the property that, for every
connected domain Ω such that Ω0 ⊂ Ω, meas(Ω) = meas(Ω∗):

capΩ∗(Ω0) ≤ capΩ(Ω0) (41)

Remark 4.3 The same method has been applied in a particular problem of elasticity
theory: we consider the elastic torsion of a hollow elastic shaft, in this case Ω0 denotes
the hole cross section of the shaft. Assuming that the boundary Γ0 and the measure of Ω
are given, we look for the shape of Ω such that the torsional stiffness

KΩ = 2(
∫

Ω
udω + cA0) (42)

is maximized
It is well known that the stress function u solves the following boundary value problem:

−∆u = 2 in Ω (43)

u = 0 on Γ (44)

u = c on Γ0 (45)

−
∫

Γ0

∂u

∂n
ds = 2A0 (46)

where A0 is the area of the region bounded by Γ0 and c is an unknown quantity whose
value can be determined using (46). Using a relaxed problem defined on a ball BR as
before, the existence of an optimal domain ΩR has been proved in [14]. In [22], Lederman
and in [30] R. Tahraoui prove that the domain ΩR is connected and, for a radius R large
enough, it solves the original problem. If Γ0 is C2, C. Lederman [22] has recently proved
that the exterior boundary Γ of the optimal set ΩR is locally analytic.

4.2 The interior boundary case

Let the boundary Γ and the area |Ω0| = A0 be given, we look for the shape of the
interior boundary Γ0 in order to minimize the capacity CapΩ(Ω0). An important physical
interpretation is the following : If D is filled with a homogenous, isotropic material we look
how to locate and how to shape a heat source within D such that the heat leakage from
the body D is minimized. The boundary condition on the inner domain Ω0 will be treated
via a penalization term. Let µ be a bounded non-negative function (i.e. 0 ≤ µ ≤ 1) such
that:

∫
D µdω = A. For a fixed µ as defined and a fixed, positive constant β we define the

functional on H1
0 (D):

u→ Jβ(u) = ‖∇u‖2 + β

∫

D
µ|u− 1|2dω.

Applying standard properties of Variational Analysis, the following result is valid:
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Theorem 4.2 There exists only one element uβ(µ) ∈ H1
0 (D) ∩ C1,α(D) such that the

functional Jβ is minimized. Furthermore, uβ solves the partial diferential equation:

−∆u+ βµ(u− 1) = 0 in D.

Again, we define the mapping µ → Φ(µ) = Jβ(uβ(µ)) on the convex set
C =

{
µ ∈ L∞ | 0 ≤ µ ≤ 1,

∫
µdω = A

}
, and when considering its minimization on C, we

obtain the usual result:

Theorem 4.3 There exists a set Ωβ ⊂ D such that the function µβ = χΩ minimizes Φ
on C. Furthermore, there exists a constant pβ so that

Ωβ = {x ∈ D | uβ(x) > pβ}

∂Ωβ = {x ∈ D | uβ(x) = pβ} .

Remark 4.4 For the corresponding element uβ ∈ H1
0 (D) this means:

−∆uβ + β(uβ − 1) = 0 in Ωβ

∆uβ = 0 in D − Ωβ.

It is known that free boundaries in this kind of problems are locally analytic.

It has been shown in Gonzalez de Paz [13]:

Theorem 4.4 In the case there is an increasing sequence {β} tending to infinity, there
exists a subsequence so that for the corresponding sequences {uβ} , {µβ}:

uβ → u∗ in H1
0 (D)

µβ → µ∗ in L2(D).

Furthermore, µ∗ ∈ C is the characteristic function of a set Ω× such that u∗ = 1 on Ω∗

and for ∂Ω∗ regular enough u∗ is harmonic in Ω, so that in this case for every Ω0 such
that |Ω0| = A :

CapΩ(Ω∗) ≤ CapΩ(Ω0).

Remark 4.5 As u∗ ∈ H1
0 solves a variational problem similar to those studied by Alt-

Cafarelli[1] the free boundary ∂Ω∗ has a C1,a
loc -regularity.

Remark 4.6 Let us remark that in the distributions-sense:

−∆u∗ = ν∗ in D

for a finite energy measure ν× such that its support in the distribution sense lies in ∂Ω∗.
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5 Free boundary value conditions

5.1 Calculation of the shape-derivative

Let us consider again the exterior boundary case for the shape optimization problem. Let
φt : D → D be a diffeomorphism which is continuously dependent of a positive parameter t,
so that φ0 is the identity mapping (i.e. for any domain Ω ⊂ D : φ0(Ω) = Ω). Furthermore,
for a given domain Ω ⊂ D we denote φt(Ω) = Ωt, so that the mapping t → φt describes
continuous deformations of Ω. Using a certain topology, J.P. Zolesio in [34] calculates the
derivative Dtφt = θ where θ is the vector field describing the “deformation speed”. For
the domain functional Ωt → J(Ωt), the shape-derivative at Ω in the direction of the vector
field θ is defined in the sense of Eulerian semiderivatives as follows (for futher details see
for example M. Delfour [7]):

dJ(Ω; θ) = lim sup
t→0+

J(Ωt) − J(Ω)
t

.

Applying the techniques developed by Sokolowski-Zolesio [28] it has been shown that
in the case that the function u0 solution for P (µ0) is constant on Γ, then we have for small
t and αt = χΩt − χΩ :

Φ(µt) = Φ(µ0) + 〈W − fu0;αt〉 +
t

2

∫

Γ
(
∣∣∣∣
∂u+

0

∂n

∣∣∣∣
2

−
∣∣∣∣
∂u−0
∂n

∣∣∣∣
2

)θnds (47)

where the restrictions of u0 to Ω and D − Ω are denoted by u+
0 and u−0 respectively,

µt = χΩt , µ0 = χΩ and the term θn describes the normal component to Γ of the vector
field θ.

In fact, in the particular case of the relaxed problem the last integral term of the right
side vanishes because of the “transmission” condition [35] and we obtain as functional
gradient the same term as Theorem (2.2). We remark that in the case that the function
u0 is not constant on Γ we shall have non-zero tangential derivatives of u0 on Γ.

Remark 5.1 Let D = R2. Let us consider the limit case for the outer boundary problem.
We recall that, due to the properties of the logarithmic potential in R2, as u∗ is harmonic
and bounded in the complement of Ω∗ ∪ Ω0 which is an unbounded domain, then µ∗ is
zero on it. The gradient ∇u∗ is not a continuous function anymore, so that in the case
that the corresponding boundary Γ is regular enough, and taking notice that u∗ = 0 on
it, the shape derivative becomes:

dΦ(Ω, θ) =
∫

Γ
(W − 1

2

∣∣∣∣
∂u−

∂n

∣∣∣∣
2

)θnds. (48)

As dΦ(Ω∗, θ) = 0 for every vector field θ such that the measure is preserved, (i.e.∫
Γ θnds = 0) it follows that there exists a constant λ such that:

W − 1
2

∣∣∣∣
∂u−

∂n

∣∣∣∣
2

= λ on Γ. (49)
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This boundary condition is known as a Bernoulli-condition. The special case where
W = Q2 and there is no constraint of type (3), has been treated in the famous paper
by Alt-Cafarelli [1]. In this case the Bernoulli condition becomes:

1
2

∣∣∣∣
∂u−

∂n

∣∣∣∣
2

= Q2 on Γ. (50)

5.2 The non-linear Bernoulli condition

Some attention has been drawn lately on problems with non linear conditions of the type

−
∣∣∣∣
∂u

∂n

∣∣∣∣
2

+W + σH = λ

on the free boundary Γ, where σ > 0 is a constant and H(x) describes the curvature of
the boundary (see for instance, J.P. Zolesio [36], and M. Visintin [33]). We shall review
the main results known for this case. The main difference lies in the fact that we consider
the minimization on C of functionals of the type:

Φσ(µ) = ΦW (µ) + σΛ(µ)

where the functional Λ is defined as follows:

µ→ Λ(µ) = ‖∇µ‖M0(D)
= sup

g∈B0

∫

D
µ div g dω

where B0 = {g ∈ C1
0 (D,R2)|0 ≤ |g(x)| ≤ 1} and M0 is the set of bounded measures

on D (cf. [11]). It is known that for the case that µ = χΩ for a set Ω with a regular
enough boundary, Λ(χΩ) describes the perimeter of the set Ω in D. In the fluid mechanics
context, σΛ(µ) represents an energy term due to surface tension. Working with this kind
of functionals, an additional constraint for the perimeter P (Ω) is given. This allows to
use well-known compacity results for the characteristic functions in order to prove the
existence of optimal domains Ω constraining within sets of characteristic functions (see
Ambrosio-Buttazzo [2], Zolesio [36]). We will show that these cases may be considered as
penalizations of the energy functionals already studied.

The functional µ → Λ(µ) is convex and σ(L∞, L1)-lower-semi-continuous. For a pos-
itive constant σ, the functional Φσ is quasiconcave and σ(L∞, L1) -l.s.c. If we consider
the minimization of Φσ on C as before, for every σ there exists a µσ ∈ C ∩ BV (D) such
that the functional is minimized, here BV (D) denotes the set of measures with bounded
variation (see Giusti [11]). We can prove the following:

Theorem 5.1 For each positive σ, there exists a set Ωσ with finite perimeter such that
µσ = χΩ

proof: As µσ ∈ C there exist extremal points µ1, µ2 of C such that : µσ = αµ1+(1−α)µ2

for some α ∈ [0, 1] . It follows that

Φσ(µσ) ≤ Φσ(µ1),Φσ(µσ) ≤ Φσ(µ2).
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Let us assume that Φ(µ1) ≤ Φ(µ2), then, as Φσ is quasiconcave it follows that for every
α ∈ [0, 1] :

Φσ(µ1) ≤ Φσ(αµ1 + (1 − α)µ2)

this implies:
Φσ(µ1) ≤ Φσ(µσ)

so we conclude that: Φσ(µ1) = Φσ(µσ) and this allows to choose µσ as an extremal point
of C, wich is a characteristic function.

Remark 5.2 Noting that when we exchange the order of minimization in our problem,
we obtain that for every u ∈ K the optimal µσ solves the following:

min
µ∈C

〈W − fu, µ〉 + σΛ(µ)

more specially, for u = uσ corresponding solution for P (µσ):

〈W − fuσ, µσ〉 + σΛ(µσ) ≤ 〈W − fuσ, µ〉 + σΛ(µ)

for every µ ∈ C.
In the case µ = χΩ, with Ω regular enough, Zolesio [36] has calculated the shape-

derivative of the functional Λ in the sense that:

dΛ(Ω; θ) = lim inf
t→0+

1
t
{Λ(µt) − Λ(µ0)} = 〈H, θ〉D′×D

where µt = χΩ, and H ∈ E ′ is a distribution such that supp H ⊂ Γ, so that if Γ is smooth
enough:

dΛ(Ω; θ) =
∫

Γ
Hθnds

where H is the curvature function of the boundary Γ. So, in the case that the domain
Ωσ has a boundary regular enough, it is possible to calculate the shape derivative of the
functional µ→ Λ(µ) and we get:

dΦ(Ωσ, θ) =
∫

Γ
(W − fuσ + σH)θnds.

As a consequence of the optimality conditions, this implies that there exists a Lagrange
multiplier λ related to constraint (3) such that:

W − fuσ + σH = λ on Γ. (51)

We remark that in fluid mechanics, if we let f = ε → 0+ we become the well-known free
boundary condition for hydrostatic problems in the case of irrotational ideal fluids:

W + σH = λ on Γ. (52)

Remark 5.3 It has been proved by Gonzales, Massari and Tamarini [12] that for the
case of a set minimizing perimeter under area constraint the free boundary Γ is locally
analytic.
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Remark 5.4 Again, assuming that D = BR and letting R → ∞, for the limit function
we obtain uσ = 0 in the unbounded domain and we have for the boundary Γ of a limit set
Ω∗ regular enough:

−1
2

∣∣∣∣
∂u−σ
∂n

∣∣∣∣
2

+ σH +W = λ on Γ. (53)

Remark 5.5 The term σλ might be interpreted as a “penalization” or “regularization”
term. Let us assume that µ∗ ∈ C ∩BV (D) is an optimizing element for Φ, (without loss
of generality, let W = 0). This implies, for σ > 0 :

Φ(µσ) + σΛ(µσ) ≤ Φ(µ∗) + σΛ(µ∗)

so it follows:
0 ≤ Φ(µσ) − Φ(µ∗) ≤ σ(Λ(µ∗) − Λ(µσ)).

As σ > 0 :
Λ(µσ) ≤ Λ(µ∗)

i.e. the terms Λ(µσ) remain bounded. Let us take for the parameter σ a decreasing
sequence such that σ ↘ 0, then it is possible to choose a subsequence (µσ)σ such that
µσ → µ0 ∈ C∩BV (D) for the strong L1-topology. The limit element µ0 is a characteristic
function (cf. [11]). It follows from the Theorem 2.1: Φ(µσ) → Φ(µ0) and furthermore,
due to the lower semicontinuity of Λ:

Λ(µ0) ≤ lim inf Λ(µσ) ≤ Λ(µ∗).

We remark that the sequence (Φσ(µσ))σ is also decreasing, thus for σ < σ′ we have:

Φ(µσ) + σΛ(µσ) ≤ Φ(µσ′) + σΛ(µσ′) ≤ Φ(µσ′) + σ′Λ(µσ′).

This implies that: Φσ(µσ) ↘ Φ(µ0), and as for every σ > 0 :

Φ(µ0) ≤ Φσ(µσ) ≤ Φσ(µ∗)

it follows that: Φ(µ0) ≤ Φ(µ∗), and as µ0 ∈ C, it follows the equality. This implies that
µ0 is an optimizing element of the original functional Φ.

6 Conclusions

It has been shown that several well known free boundary value problems can be studied
by means of a relaxation approach in the framework of Convex Analysis. All of them
present common features, so that a unified theory seems well-adapted. Its main theoretical
advantange lies in bridging the gap between relaxation methods and the work developed
by the shape sensitivity school and it is also well-fitted for other applications in plasma
physics, fluid mechanics and electrochemistry.

For the numerical solution of this kind of problems, an algorithm of the Frank-Wolfe
type was presented by Gonzalez de Paz-Tiihonen [17]. Its main advantage would be that
the algorithm can change the topological structure of the solution during the optimization
process. Besides, there is no need to change the discretization grid, which remains fixed
during the iteration process. As this kind of problems are non-convex, the algorithm allows
to try different initial designs in order to compare results.
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