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Abstract

We analyze a two-dimensional discrete-time SIS model with a non-constant total
population. Our goal is to determine the interaction between the total population,
the susceptible class and the infective class, and the implications this may have for the
disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is
possible to assume the existence of an asymptotic limiting equation which enables us
to reduce the system of two-equations into a single, dynamically equivalent equation.
In this case, we are able to demonstrate the global stability of the disease-free and
the endemic equilibria when the basic reproductive number (R0) is less than one and
greater than one, respectively. When we consider a non-constant recruitment rate,
the total population bifurcates as we vary the birth rate and the death rate. Using
computer simulations, we observe different behavior among the infective class and the
total population, and possibly, the ocurrence of a strange attractor.

Keywords: Susceptible-Infective-Susceptible (SIS), difference equations, bifurcation, ba-
sic reproductive number (R0), asymptotic limiting equation.

Resumen

Analizamos un modelo bidimensional SIS en tiempo discreto con una población
total no constante. Nuestra meta es determinar la interacción entre la problación
total, la clase susceptible y la clase infectada, y las implicaciones que esto puede tener
para la dinámica de la enfermedad. Usando una tasa de reclutamiento constante en la
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clase susceptible, es posible asumir la existencia de una ecuación limitante asintótica
que permite reducir el sistema de dos ecuaciones a una sola ecuación dinámicamente
equivalente. En este caso, somos capaces de demostrar la estabilidad global de los
equilibrios libres de enfermedad y la endemia, cuando el número básico reproductivo
(R0) es menor que uno y mayor que uno, respectivamente. Cuando se considera una
tasa de reclutamiento no constante, la problacón total se bifurca cuando se vaŕıa la
tasa de natalidad y la tasa de mortalidad. Usando simulaciones computacionales,
observamos diferentes comportamientos entre la clase infectada y la población total,
y posiblemente, la ocurrencia de un extraño atractor.

Palabras clave: Susceptible-Infeccioso-Susceptible (SIS), ecuaciones en diferencias, bi-
furcación, número básico reproductivo (R0), ecuación limitante asintótica.

Mathematics Subject Classification: 92D30, 92B15

1 Introduction

Infectious diseases are classified into two groups: microparasitic diseases which are trans-
mitted by viruses and bacteria, and macroparasitic diseases which are are transmitted by
worms. Microparasites can reproduce within their host and the diseases can be transmit-
ted via one host to the other. On the other hand, macroparasites show very complicated
life-cycles, and usually involve a secondary host, or carrier, as explained by Anderson [3].

One problem associated with the modelling of infectious diseases is that it is very diffi-
cult to measure or even estimate the total infectious population. A second problem is that
primitive models assume that viruses propagate freely and randomly encounter new hosts.
However, the spread of microparasitic diseases is actually caused by contact or close inter-
action between the infected and healthy individuals. In all microparasitic epidimiological
models, the distinction is made between the disease-carrying individuals (the infective
class), and the disease-free individuals (the susceptible class)(Edelstein-Keshet)[8]. In
a Susceptible-Infective-Susceptible (SIS) model, formerly infective individuals who are
cured do not develop permanent immunity, but instead return to the susceptible class
(Allen)[2].

This research investigates a discrete-time SIS model which may be applicable to partic-
ular diseases (Allen L.)[1], or may be considered as a discrete analog of the more well-known
continuous-time Markov models. In our discrete time (SIS) model, the total population is
not constant. We call the equation for the total population the demographic equation. For
this model, we separate our work into two cases: a constant and non-constant recruitment
(or birth) rate.

For the case of a constant recruitment rate, we assume there exists a limiting equation
that enables us to reduce the system of two equations to a single equation. We prove
that, under the condition that the basic reproductive number (R0) is less than one, the
disease-free equilibrium is globally stable. Also, when R0 is greater than one we prove
that the endemic equilibrium is globally stable.

In the case where we consider non-constant recruitment, there are bifurcations for the
demographic equation. These bifurcations are governed by varying the birth and death
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rates. In the range of parameters where there exists a positive fixed point for the de-
mographic equation, we can reduce to a single equation (as in the constant recruitment).
Then we can obtain global stability of the disease-free and endemic equilibria for the infec-
tive equation. Outside the range of parameters where we can reduce to a single equation,
we perform computational analysis through bifurcation diagrams for the demographic,
susceptible, and infective equations.

We use the following model:

Sn+1 = f(Tn) + Snπ(n, n + 1)h(In) + Inπ(n, n + 1)[1 − ξ(n, n + 1)]

In+1 = Snπ(n, n + 1)[1 − h(In)] + Inπ(n, n + 1)ξ(n, n + 1)ζ(n, n + 1),

with
Tn = Sn + In = f(Tn) + Tnπ(n, n + 1) + Inπ(n, n + 1)[ζ(n, n + 1) − 1]

where from generation n to n+1,

1 − π(n, n + 1) = 1 − e−µ is the probability of death due to natural causes,

1 − ξ(n, n + 1) = 1 − e−σ is the probability of recovering,

1 − ζ(n, n + 1) = 1 − e−ρ is the probability of death due to infection

h(In) = e−αIn is the probability of not becoming infected,

f(Tn) = birth or immigration rate (2 cases),

and α, µ, σ > 0. However, we consider cases for ρ ≥ 0 to account for infections which may
or may not be fatal. In the majority of our analysis we take ρ = 0.

1.1 Assumptions

The following assumptions are primarily biologically motivated:

1. The time step is one generation.

2. There is no negative population.

3. From generation n to n+1, infections occur before deaths.

4. Rates of events occur independent of generation.

5. There are no infected births–all births enter into the susceptible class.

6. In the case of the non-constant recruitment if there are no people, then there are no
births: f(0) = 0.

7. If there are too many people, then there are not enough resources to sustain further
births:

lim
Tn→∞

f(Tn) = 0.

8. The probability of not becoming infected when there are no people is one: h(0) = 1.
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9. The probability of not becoming infected as the number of infected increases is a
strictly decreasing function: h′(In) < 0.

10. With too many infectious people, the probability of not becoming infected is zero:

lim
In→∞

h(In) = 0.

2 Constant recruitment rate

We use constant recruitment to model a constant flow of new susceptibles through either
birth or immigration. Here,

f(Tn) = Λ > 0.

So, our new model becomes:

Sn+1 = Λ + Sn e−µe−αIn + Ine−µ[1 − e−σ], (1)

In+1 = Sne−µ[1 − e−αIn ] + Ine−µe−σ, (2)

and

Tn+1 = Λ + Tne−µ. (3)

2.1 Limiting equation

Tn is linear and the solution to (3) is,

Tn = e−µn(T0 −
Λ

1 − e−µ
) +

Λ

1 − e−µ

Notice that

lim
n→∞

Tn =
Λ

1 − e−µ
≡ T∞. (4)

We set T0 = T∞. This simply means that the population starts at the asymptotic limit of
the demographic population. Now, we plug Sn = T∞ − In into (2) to get:

v(In) = (T∞ − In)e−µ[1 − e−αIn ] + Ine−(µ+σ). (5)

The function v is a single-humped function. Figures 1-3 show some graphs of this
function for various parameters. It is apparent from graphs of v (and could be easily shown
using calculus) that v(In) = 0 has one positive root, Ir. As v(In) = 0 is a transcendental
equation, a formula for Ir could not be found explicitly. In consideration of assumption
2, we now define our infectious population equation:

u(In) = In+1 =

{

v(In) , if In ≤ Ir

0 , if In > Ir.
(6)
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Figure 1: v for various parameters with the line y = x: α = 1, σ = 1, λ = 0.7, µ = 0.01,
R0 = 109.5512 > 1.

We wish to consider only the dynamics for In ≤ Ir. The proofs to follow assume that
our function does not become degenerate such that a great proportion of initial conditions
get mapped out of the region [0, Ir]. This happens if the maximum of u, denoted by M ,
is greater then Ir, i.e.

Ir ≤ M. (7)

Exercise 11.4.6 in Strogatz [12] will lead the reader to the realization that if inequality
(7) is true, then the set of I0 for which trajectories do not get mapped to zero after some
finite amount of iterations is topologically equivalent to a Cantor set. The proof that there
exists a globally attracting endemic point rests on the assumption that inequality (7) is
not true. More about this will be said when it becomes relavent.

So we have reduced the system (1-2) of two equations to a single equation. We use the
dynamics of this discrete-time single equation to draw conclusions about the dynamics
of the two-equation system. This is not an unusual comparison in analysis of systems
which have a limiting demographic state. This reduction to a single equation can also be
justified by our simulations in which the system and the single equation exhibit the same
qualitative dynamics. Theoretical results for continuous-time systems have been obtained
by Theime & Castillo-Chavez [4].

2.2 R0

We can see that I∗ = 0 is a fixed point of (6). We determine R0 for the disease-free
equilibrium by using |u′(0)| < 1. This yields our basic reproductive number,

R0 =
αT∞e−µ

1 − e−(µ+σ)
. (8)
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Figure 2: v for various parameters with the line y = x: α = 1, σ = 1, λ = 1, µ = 0.01,
R0 = 156.5017 > 1.

Biologically, this R0 represents the average number of effective contacts multiplied
by the number of available susceptibles. This is found by observing that α

1−e−(µ+σ) is the
infection rate per infective per generation multiplied by the average number of generations
an individual is infectious before dying or recovering. So, this yields the average number
of effective contacts. T∞e−µ is the population size when there is no infection, discounted
by deaths. So, this R0 is interpreted as the number of people an infected person infects.
We will see that if R0 > 1, the disease can invade, and if R0 < 1, the disease will die out.

2.3 Dynamics of single equation, case R0 < 1

We will now show that for certain stability conditions, I∗ = 0 is a global attractor.

Lemma 2.1 Assume that f(x) is a continuous function of x. If the solution of the dif-
ference equation xn+1 = f(xn) is convergent, then the limit of xn is a fixed point of f(x).
Hence x̄ is a fixed point of f(x).

proof: Given

xn+1 = f(xn)

by taking the limit in both sides from n → ∞

lim
n→∞

xn+1 = lim
n→∞

f(xn)

Let x̄ = limn→∞ xn+1, then x̄ = limn→∞ f(xn) = f(limn→∞ xn) = f(x̄).
Hence, x̄ is a fixed point of f(x).
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Figure 3: v for various parameters with the line y = x: α = 1, σ = 1, λ = 1, µ = 0.1,
R0 = 14.2526 > 1.

Theorem 2.1 If R0 < 1, then I∗ = 0 is a global attractor of u(In).

proof: By definition, I∗ is globally stable if

lim
n→∞

In = I∗

for all I0 ∈ [0,∞). Clearly, I∗ = 0 is a fixed point of (6). We have to show that I∗ is
unique and that all initial conditions tend towards I∗. We will first show that In+1 < In

for all n ∈ N. First, define:
f : [0,∞) → R,

f(x) = 1 − e−αx − αx,

where α > 0 and f is continuous.

f(0) = 0 (9)

f ′(x) = αe−αx − α = α(e−αx − 1)

Since − αx < 0 by definition,

⇒ e−αx < 1

e−αx − 1 < 0

⇒ f ′(x) < 0

Therefore, f(x) is decreasing. So, for all a ∈ (0,∞),

f(a) < f(0)

By (9), f(a) < 0
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⇒ f(x) < 0, for all x > 0

⇒ 1 − e−αIn − αIn < 0

1 − e−αIn < αIn

1

αIn

<
1

1 − e−αIn

⇒
1 − e−(µ+σ)

αIn
<

1 − e−(µ+σ)

1 − e−αIn

(10)

Now,

R0 =
αT∞e−µ

1 − e−(µ+σ)
< 1

⇒ e−µ(e−σ +
αΛ

1 − e−µ
) < 1

⇒ e−µ(
1

In

Λ

1 − e−µ
− 1) <

1

In
(
1 − e−(µ+σ)

α
) − e−µ

< (
1 − e−(µ+σ)

αIn

)

From (10), ⇒ <
1 − e−(µ+σ)

1 − e−αIn

Therefore, e−µ(
1

In

Λ

1 − e−µ
− 1) <

1 − e−(µ+σ)

1 − e−αIn

1

In
e−µ(

Λ

1 − e−µ
− In)(1 − e−αIn) < 1 − e−(µ+σ)

1

In

e−µ(T∞ − In)(1 − e−αIn) + e−(µ+σ) < 1

e−µ(T∞ − In)(1 − e−αIn) + Ine−(µ+σ) < In

⇒ In+1 < In

Therefore, we have a strictly decreasing series.

Furthermore, since In+1 < In,

⇒ u(In) < In

⇒ u(In) 6= In (for all In 6= 0.)

Therefore, I∗ = 0 is the only fixed point, and we have uniqueness.

So, u(In) is continuous, decreasing, and bounded below by zero. Thus, u(In) must con-
verge, and by the above lemma,

lim
n→∞

In = I∗.

Therefore, I∗ = 0 is global attractor.
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When R0 > 1 we need not worry that we will end up with only a dust-like Cantor set
which goes to the endemic attractor. We can see from figures 1-3 that inequality (7) is
not satisfied for these choices of parameter values. Furthermore, simulations confirm that
no choice of parameters (R0 < 1 or R0 ≥ 1) give us inequality (7).

2.4 Dynamics of single equation, case R0 > 1

In the case R0 > 1, the disease-free equilibrium is unstable. We will show that there is a
stable, unique endemic fixed point that attracts all interior points for values of R0 > 1.
This I∗ satisfies u(I∗) = I∗ such that I∗ > 0, and limn→∞ In = I∗ for all I0 > 0 and
R0 > 1.
First, we will show the existence and uniqueness of I∗ > 0 for R0 > 1.

Theorem 2.2 There exists a fixed point I∗ > 0 of u(In) for R0 > 1.

proof:

R0 =
αT∞e−µ

1 − e−µ+σ
> 1

⇒ αT∞e−µ > 1 − e−(µ+σ) (11)

Let

g(x) = u(x) − x

= T∞e−µ − e−µ(T∞ − x)e−αx

−(e−µ − e−(µ+σ) + 1)x (12)

= 0 for a fixed point of u(x)

Obviously, g(0) = 0 , but find I∗ > 0

g′(x) = −(e−µ − e−(µ+σ) + 1) + e−µ(αT∞ + 1)e−αx

−αxe−µe−αx (13)

g′(0) = −(1 − e−(µ+σ)) + αT∞e−µ

⇒ g′(0) > 0 by (11)

So, g(x) strictly increases from x = 0.
By 12, we have

lim
x→∞

g(x) = e−µT∞ − lim
x→∞

−(e−µ − e−(µ+σ) + 1)x

Note that e−µ + 1 > e−(µ+σ) (14)

So, lim
x→∞

g(x) = −∞

By the intermediate value theorem, g(x) has at least one positive zero since g(x) is con-
tinuous. Therefore, there exists I∗ > 0 such that u(I∗) = I∗.

Theorem 2.3 I∗ > 0 is a unique positive fixed point of u(In) for R0 > 1.
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proof: Let g(x) = u(x) − x as before. We have proved that there is at least one positive
fixed point of u(x). I∗ > 0 is unique if there is only one x∗ > 0 such that g′(x∗) = 0, since
g(0) = 0, g′(0) > 0, and limx→∞ g(x) = −∞.

Now, by (13), lim
x→∞

g′(x) = −(e−µ − e−(µ+σ) + 1),

by (14) lim
x→∞

g′(x) < 0.

So, since g′(x) is continuous, by the intermediate value theorem there exists at least one
x∗ such that g′(x∗) = 0.
Look for extrema of g′(x):

g′′(x∗∗) = −αe−µ(1 + αT∞)e−αx∗∗

− αx∗∗e−µe−αx∗∗

+ α2x∗∗e−µe−αx∗∗

= 0

⇒ αx∗∗ = 2 + αT∞

x∗∗ = T∞ +
2

α

And, g′′(x) > 0 if x > x∗∗

g′′(x) < 0 if x < x∗∗

Thus, there is one local extrema of g′(x), namely g′(x∗∗).

Now, g′(x∗∗) = e−µ(1 + αT∞)e−αx∗∗

− (αT∞ + 2)e−µe−αx∗∗

− (e−µ − e−(µ+σ) + 1)

= e−µe−αx∗∗

(−1) − (e−µ − e−(µ+σ) + 1)

< 0 by (14)

So, the minimum occurs at g′(x∗∗), and g′(x) increases asymptotically to a negative number
in the interval (x∗∗,∞), since limx→∞ g′(x) < 0. And, g′(x) strictly decreases in the
interval (0, x∗∗). Therefore, there is only one zero of g′(x) in the interval (0, x∗∗).
This implies that the function g(x) has only one relative extrema. Therefore, there is only
one x∗ > 0 such that g(x∗) = 0. This is the one and only I∗ > 0 such that u(I∗) = I∗.
We know for R0 > 1, I∗ = 0 is unstable. If there are no m-cycles (m ≥ 1), then we can

conclude that I∗ > 0 is globally stable within a certain range of R0.

Theorem 2.4 I∗ > 0 is globally stable for 1 < R0 < R∗.

proof: (By contradiction)
There exists an R∗ such that for R0 < R∗,

T∞ ≥ I for all I

⇒ T∞αe−µe−αI ≥ Iαe−µe−αI

αT∞e−µe−αI − αIe−µe−αI ≥ 0 > e−µ − e−µe−σ − e−µ−αI − 1

⇒ αT∞e−µe−αI − αIe−µe−αI > −e−µe−σ − e−µe−αI − 1 + e−µ

1 − e−µ + αT∞e−µe−αI + e−µe−αI − αIe−µe−αI + e−µe−σ > 0

⇒ 1 + u′(I) > 0
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Where,

u(I) = (T∞ − I)(1 − e−αI)e−µ + Ie−µe−σ

u′(I) = −e−µ + αT∞e−µe−αI + e−µe−αI − αIe−µe−αI + e−µe−σ

Suppose two-cycle such that u(I1) = I2 and u(I2) = I1.
We have 1 + u′(I) > 0

⇒

∫ I2

I1

(1 + u′(I))dI > 0

⇒ 0 <

∫ I2

I1

(1 + u′(I))dI = I2 + u(I2) − I1 − u(I1) = 0

So there cannot exist a two-cycle. Then by Cull [5] and Allen [1] no two-cycles implies no
m-cycles. This is by assumption that the set is invariant. Thus, we have global stability.

3 Non-constant recruitment model

This case models the effect of replacing constant recruitment with a Ricker equation. Here,

f(Tn) = Λ = βTne−γTn (15)

Sn+1 = βTne−γTn + Sne−αIne−µ + e−µ[1 − e−σ]In (16)

In+1 = Sne−µ[1 − e−αIn ] + Ine−µe−σ (17)

Tn+1 = Sn+1 + In+1 = βTne−γTn + Tne−µ (18)

where β = maximal birth rate/person/generation

3.1 Demographic equation

Equation (18) is called the demographic equation. We analyze the dynamics of (18) in
order to determine sufficient and necessary conditons for stability of the fixed points. Let
f1(T ) = βTe−γT + Te−µ then equilibria of the demographic equation are given by the
solutions of the following equation,

f1(T ) = T

so the fixed points are as follows,

T 1
∞ = 0 (19)

T 2
∞ =

1

γ
ln(

β

1 − e−µ
) (20)
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Let Rd = β
1−e−µ . Now notice that if Rd < 1 then there is no positive fixed point. In this

case the only fixed point is1T∞ = 0 . Therefore, this equilibrium point is locally stable by
the following statement:

Rd < 1

⇒ β < 1 − e−µ

⇒ 0 < β + e−µ < 1

⇒ |f ′
1(0)| < 1

On the other hand, in the case where Rd > 1, there exists two fixed points.

Lemma 3.1 For 1 < Rd < e
2

1−e−µ , T 2
∞ is locally stable.

proof:

1 < Rd < e
2

1−e−µ (21)

⇒ −2 < −(1 − e−µ)ln(Rd) < 0

⇒ |1 − (1 − e−µ)ln(Rd)|

⇒ |f ′
1(

1

γ
ln(Rd))| < 1 �

The biological interpretation of Rd explains the importnce of the parameters β and µ

in the stability of the population. β is the maximal birth rate/person/generation– this
occurs when T∞ is small and there is no competition for resources. 1

1−e−µ is the average
number of generations an individual is alive before dying, that is, the average number of
generations in which an individual can reproduce. So, Rd is the average number of births
per person that enter the system during the individual’s lifetime. We show that Rd > 1
implies stability of a non-zero population. Larger Rd values cause chaotic behavior in the
demographic equation.

3.2 Limiting equation In+1: case Rd < 1

As we have already seen previously, Rd < 1 implies the existence of only one fixed point.
The limiting equation is not used in this case because that would imply the extinction of
the population.

3.3 Limiting equation In+1: case 1 < Rd < e
2

1−e−µ

Assuming (21), we can reduce (16) and (17) into a single equation by utilizing the limiting
equation. Then we have the following equation:

In+1 = (T∞ − In)e−µ(1 − e−αIn) + Ine−µe−σ (22)
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where T∞ = 1
γ
ln(Rd).

Again by studying the stability conditions for the disease free equilibrium, we get the
basic reproductive number:

R0 =
αe−µ 1

γ
ln(Rd)

1 − e−(µ+σ)
. (23)

Therefore, by the theorem of section 2.3, the disease free equilibrium of (22) is a global
attractor if R0 < 1. In addition, if R0 > 1 then the endemic equilibrium of (22) is a global
attractor.

3.4 Rd > e
2

1−e−µ

Tn undergoes a period-doubling route to chaos. In this case, a T∞ substitution would not
be justified, as Tn bifurcates into multiple T∞ values. We investigate the dynamics of the
system using computer simulations.

The Appendix includes bifurcation plots of the system with different parameters. The

point at which the 2-cycle occurs is when Rd becomes greater than e
2

1−e−µ .
In Figure 5, we have α = 0.5, β = 15, γ = 1, σ = 0.1, S0 = 5, I0 = 10. We can see that

for a range of values for µ, Tn and Sn exhibit chaotic behavior, while In does not. This
also occurs for a range of values for β in Figure ??, but it is interesting that In bifurcates
for different values of β than Tn and Sn, yet their bifurcations eventually seem to coincide.
Here, α = 5, γ = 1, µ = 2.5, σ = 3, S0 = 5, I0 = 10. We should note that there were
several hundred iterations performed for each figure, and it appears that this is sufficient
to determine the convergence of the fixed points.

Figure 4: Bifurcation on µ: α = 5, β = 15, γ = 1, σ = 0.1, S0 = 5, I0 = 10.

These results are significant in that they show that the disease can exhibit dynamics
independent from the demography. So, for many parameter values, the study of the
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Figure 5: Bifurcation on β: α = 5, γ = 1, µ = 2.5, σ = 3, S0 = 5, I0 = 10.

demographic dynamics would not indicate the dynamics of the disease in the population.
However, with limited resources, it is not possible for us to fully explore any bounds on
the parameters in which we can determine the behavior of the system. These simulations
serve merely as interesting examples of the dynamics we have found thus far.

3.5 A strange attractor for the system?

In iterating the system for a few initial conditions and fixed parameters we see what
may be a strange attractor. In the plots to follow, Sn is on the vertical axis and In

is on the horizontal axis. In the computations the parameters were fixed as follows:
α = 1.5, β = 170, γ = 2, σ = 0.1, So = 10, Io = 10.

Figure 6 shows the last 35,000 iterates of 70,000 iterates. We believe that the iterates
shown represent the shape of the attractor. This is because we know that for a these
fixed parameters, T∞ is bounded above by about 29.4149. So, S∞ and I∞ must also be
bounded above. The graphs show that no iterates go beyond In ≈ 30. Figures 7 & 8 show
iterates 34,000-35,000 and 69,000-70,000, respectively. We can see from these figures that
after roughly 35,000 iterates, the maximum S′

ns have increased. Because of the bounds on
Tn and In, Sn must be bounded above by around 0.5. We can see that all iterates must
be trapped within the crude shape that forms in figure 6. After a huge number of iterates
(the transients only comprise about five of the 70,000 iterates), the attractor will show its
true form. More numerical simulations will give us more insight as to whether it is indeed
a strange attractor.
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Figure 6: A strange attractor?

4 ρ > 0: death due to infection

This model takes into consideration that the infection can generate vital statistics. We
take ρ > 0

Sn+1 = βTne−γTn + Sne−αIne−µ + e−µ[1 − e−σ]In

In+1 = Sne−µ[1 − e−αIn ] + Ine−µe−σe−ρ

Tn+1 = Sn+1 + In+1 = βTne−γTn + Tne−µ + Ine−(µ+σ)(e−ρ − 1)

Computer simulations were used to analyze this system (without a T∞ substitution).
Figure (9) shows a bifurcation plot with varying ρ. Here, α = 1.5, β = 170, γ = 2, µ =
2, σ = 0.1, S0 = 10, I0 = 10. We can see results similar to that of varying µ. We would
need to run further simlations, but we can conclude that changes in death rates (due to
natural causes, or infection) drastically affect the dynamics of the system and the infected
population again exhibits dynamics independent from the demography.

5 Conclusion

Our analysis has shown that we can make definitive conclusions about the stability of
certain disease levels in our SIS model. We have proven that if the infection rate per
infective (R0) can be estimated to be less than one, the infection does not persist. If the
infection rate per infective is greater than one, the infection persists in the population.

When we consider a non-constant recruitment (or birth) rate, the stability of the
demographics is entirely dependent on the average number of children an individual has
during a lifetime, Rd. The previous results of stability for the infective population apply, as
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Figure 7: Iterates 34,900-35,000, maximum Sn ≈ 0.09

for constant recruitment, when Rd is in a range such that there is one limiting demographic
value.

Through computer simulation, we discovered that the model with Ricker recruitment
exhibits chaotic dynamics for values of Rd in certain ranges. We have shown strong evi-
dence for the existence of a strange attractor. Our simulations may show mathematically
interesting results for period-doubling limiting demographic values; however, this would
of course require further analysis before any significant conclusions could be made about
the biological implications.

The main goal of this project was to develop a general SIS difference equation model
that could be applied to different diseases and to analyze the stability of different infectious
states in the model. We would hope that the model has been kept general enough so that
it may be used with biologically significant parameter values for various diseases, and that
our results could provide a preliminary analysis of the epidemic.
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