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Abstract
We propose a mixed-effects linear model for analyzing growth curves data obtained

using a two-way classification experiment. The model combines an unconstrained
means model and a regression model on the time, in which the coefficients are con-
sidered random. The model allows for experimental unit covariates so as to study the
trend and the variability of the individual growth curves. Comments on data analysis
strategies are provided. An application of the model is illustrated using a data-set
comes from a chrysanthemum growth experiment.

Keywords: multilevel linear regression models, random coefficients models, means mod-
els, data analysis strategies.

Resumen
Proponemos un modelo lineal de efectos mixtos para analizar datos de curvas de

crecimiento de un experimento con dos criterios de clasificación. El modelo combina un
modelo no restringido de medias y un modelo de regresión sobre el tiempo, en el cual
los coeficientes son considerados aleatorios. El modelo considera covariables a nivel de
la unidad experimental para estudiar la tendendia y la variabilidad de las curvas de
crecimiento. Se proporcionan comentarios sobre estrategias de analisis de datos. Se
ilustra la aplicación del modelo usando un conjunto de datos de un experimento de
crecimiento de crisantemos.
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modelos de medias, estrategias de analisis de datos.
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1 Introduction

The use of linear complex models, which include both fixed and random effects and hi-
erarchically nested dataset, are becoming increasingly common in many areas of applied
research; for example, in agricultural experimentation, industrial productivity improve-
ment, behavioral and educational research, among others (Rawlings et al., 1998; Chapter
18; Gibbons, 2000; Gibbons and Bhanmik, 2001). Usually the models for repeated mea-
sures or growth curves consider a complex structure of variance-covariance matrix (Jenrich
and Schulchter, 1986; Rencher, 2000). Measures at different points for each experimental
unit can be considered as nested within the unit. Covariate data, both for time period and
experimental unit, add additional complexities to the modelling process. Large scale agri-
cultural experimentation, considers models which include environmental influences and
repeated measures (Vonesh and Chinchilli, 1997).

For a planned experiment, where the experimenter is interested in studying the growth
curves, the most common approach uses the fixed multivariate growth curve model (Pot-
thoffand Rao, 1964; Seber, 1984). However, this approach does not consider the random
variation between individual growth curves, which is a very important aspect of the prob-
lem. Following the contribution of Rao (1965), a random coefficient model approach has
been proposed, in order to incorporate more real complexities in the modelling process
(Laird and Ware, 1982; Ware, 1985). Presently, using a theoretically integrated approach,
the multilevel linear models methodology (Goldstein, 1987; 1995) permits us to solve re-
peated measures and o growth curves data analysis problem in a more realistic framework.
Multilevel linear models, also referred to as random coefficient models (Longford, 1993;
1995), covariance components models (PIenderson, 1986), mixed linear models (McClean
et al., 1991; Verbeke and Molenberghs, 1997; Gibbons, 2000), and hierarchical linear
models (Bryk and Raudenbush, 1992), are currently in widespread use.

For growth curves modelling, several authors have recently considered some particu-
lar versions of this family of models (see, e.g., Hui, 1988; Goldstein, 1989a; Ojeda and
Juárez-Cerrillo, 1996). Estimation principles and methods, hypothesis testing procedures,
diagnostics tools, and some model checking algorithms, are now available for this kind
of models (see Hand and Crowder, 1996 for a review on these topics). Moreover, vari-
ous computational software (see Kreft et al., 1994 and Singer 1998) permit to implement
strategies of data analysis using such models.

In this paper, we propose a two-level regression model for analyzing a two-way ex-
periment with growth curves data. The model is a particular case of a mixed-effects
linear model that includes an unconstrained means model (Hocking, 1985) and a regres-
sion model with random coefficients. Some comments on estimation, hypothesis testing
and diagnostic checks for the modelling process are included. An application of the model
is illustrated using a data-set comes from a fertilization study on Chrysanthemum plats.

2 The model

For denoting the individual growth curves data, let yijk = (yijk1, yijk2, . . . , yijkm)′, where
yijkt is the measurement on the k-th experimental unit; k = l, 2, ..., nij in the (i, j)-th cell;
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i = 1, 2, . . . , a; j = 1, 2, . . . , b, in a two-way classification, for the time t; t = l, 2, . . . ,m. Let
wijk = (wijk1, wijk2, . . . , wijkq)′ a vector of corresponding observations on W1,W2, . . . ,Wq,
the explanatory curve (level-two) variables. Then the growth profile for each cell is
µij = (µij1, µij2, . . . , µijm)′. The general form of the proposed model is:

yijkt = µij + β0s +
L∑

l=1

xlijktβls + eijkt, (1)

where xlijkt; l = 1, 2 . . . , L, are the values on X1,X2, . . . ,XL explanatory time dependent
(level-one) variables; s = 1, 2, . . . , S, with S =

∑a
i−1

∑b
j=1 nij; µij = µ+αAi+αBj +αAB(i,j)

and

βls = γl0 +
q∑

r=1

wijkrγlr + uls; l = 0, 1, . . . , L; s = 1, 2, . . . , S, (2)

where µ is the general mean, and αAi , αBj and αAB(i,j)
are the fixed-effects associated

with the two-way classification.
The first part in model equation (1) is an unconstrained means model for the unbal-

anced two-way classification (see, e.g., Hocking, 1985; chapter 6), and the second part
is a regression model that considers the time or time functions as explanatory variables;
where the coefficients βls are associated with the growth trajectory for each experimental
unit. The set of models in (2) constitutes a (L + l) variate regression model, where the
response vectors are βs = (β0s, β1s, . . . , βLs)′, and the vectors us = (u0s, u1s, . . . , uLs)′ are
the level-two random errors. If we let wijk = (1, wijk1, wijk2, . . . , wijkq)′, then we can write
the level-two equation (2) in a compact matrix notation as

βs = WsΓ + us; s = 1, 2, . . . , S, (3)

where Ws = IL+1⊗w′
ijk with ⊗ denoting the Kronecker product, IL+1 is the L+1 identity

matrix, and Γ = (γ′
0, γ

′
1, . . . , γ

′
L)′ ls formed by horizontal stacking of γl = (γ′

l1, γ
′
l2, . . . , γ

′
lq)

′.
In order to write equation (1) in a compact matrix notation, let xijkt = (1, xlijt, x2ijt, . . .,

xLijt)′ and Θ = (µ, αA1 , αA2 , . . . , αA(a−1)
, αB1 , αB2 , . . . , αB(b−1)

, αAB(1,1)
, . . . , αAB[(a−1)(b−1)]

)′,
and define

αAa = 1 −
a−1∑

i=1

αAi

αBb
= 1 −

b−1∑

j=1

αBj

αAB(i,b)
= 1 −

b−1∑

j=1

αAB(i,j)
; i = 1, 2, . . . , (a − 1)

αAB(a,j)
= 1 −

a−1∑

i=1

αAB(i,j)
; j = 1, 2, . . . , b.
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Then the model equation (1) can be written as

yijt = Θ′Zij + x′
ijtβs + eijt, (4)

where yijt = (yij1t, yij2t, . . . , yijnijt)′ is the outcome vector for the nij experimental units in
the (i, j)-th cell for the fixed time t, Zij is the design matrix for the two-way unconstrained
means model (see, e.g., Hocking, 1985; pp. 137–139) and eijt = (eij1t, eij2t, . . . , eijnij t)′ is
the corresponding vector of the one-level random errors.

The model in (3) and (4) is accompanied with the following general assumptions:
E{eijt} = 0, V ar{eijt} = Σ, E{us} = 0, V ar{us} = Ω, and all the random vectors are
uncorrelated, that is, Cov{eijt, ei∗j∗t∗} = 0, Cov{us,us∗} = 0, Cov{us, eijt} = 0. The
simpler form of this model arises when

∑
i = σ2Im, which is discussed by Laird and Ware

(1992), Ojeda and Juárez-Cerrillo (1996), among others.
Substituting equation (3) in equation (4) and letting Zs = TWs, where T = (Jm⊗xij)

with Jm indicating the vector of m ones, we can write the model in (4) as

yijt = Θ′Zij + ZsΓ + Tus + eijt. (5)

This is a particular case of the general mixed-effects model, which is again a special case
of the general linear model

Y = X∗β + e∗, (6)

where the variance-covariance matrix of the observation is expressed in general by V =
V ar{e∗}. The matrix X∗ may contain a large number of variables and its general form is
rather very complex and we only use this notation for a simple discussion of the methods
of estimation in this model.

If the variance-covariance matrix V is known, we can apply the generalized least
squares method and obtain the estimator:

β̂ = (X∗′V−1X∗)−1X∗′V−1Y. (7)

Note that the determination of β̂ may involve substantial computing effort and for a matrix
V with a complex structure a closed-form expressions for β̂ is not readily obtainable. In
general, it is convenient to assume a simple structure of V which can be expressed in
terms of a few parameters. Often V is unknown, and no information about the structure
of V is available. In the past, only some very simple structures of V have been considered
and no satisfactory solutions have been found. For a general review of this problem, see
Henderson (1986). It is important to recognize that when hierarchical data have a more
complex structure, as is typical in many real-life problems, iterative algorithms have to be
used to compute the estimates of the fixed- and random-effect parameters.

In recent years, different approaches and algorithms have been developed for the eval-
uation of β̂ in (6). Under the assumptions of normality, three conceptually different ap-
proaches are: empirical Bayes estimation (Dempster et al., 1977); the restricted maximum
likelihood (Mason et al., 1983), and the full maximum likelihood (Longford, 1987). In the
empirical Bayes estimation. Dempster et al. (1981) applied the EM algorithm to com-
plex hierarchical data; see also Laird and Ware (1982) and Strenio et al. (1983) for other
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applications of this approach. Goldstein (1986) proposed the iteratively reweighted gen-
eralized least squares (IGLS) procedure and showed that the estimators thus obtained are
equivalent to the full maximum likelihood estimators under the assumption of normality.
Goldstein (1989b) adapted ĺıie IRGLS algorithm for the restricted maximum likelihood
solution. Longford (1987), using a full maximum likelihood approach, considered the
Fisher scoring algorithm, which was originally proposed by Hartley and Rao (1967); see
also Longford (1993, pp. 24). All these algorithms have been implemented in a variety
of software packages. For a comparative review of various software to implement these
algorithms, see Kreft et al. (1994). Complex structures of the matrix V can be generally
considered; see, for example, Rasbash et al. (1996), Yang et al. (1996) and Verbeke and
Molenberghs (1997).

On the other hand, tests of hypotheses in model (5) are formulated for the fixed effects,
subject-level random coefficients, and for the variance and covariance components. For the
fixed effects coefficients, the approach of hypothesis testing is based on the general linear
hypothesis formulation; that is, the hypotheses that are testable in hierarchical linear
models are: H0 : C× vec(Ψ) = 0 vs. H1 : C× vec(Ψ) 6= 0, where vec is the vectorization
operator which stacks the columns of a matrix in a column vector, and H0 : Cβ = 0 vs.
H1 : Cβ 6= 0. Under the assumptions of normality, these test procedures, as special cases
of the general linear hypothesis, are exact: Hypothesis testing for variances and covariances
is performed as H0 : Ω = Ω0 vs. H1 : Ω 6= Ω0, and is generally based on the likelihood-
ratio statistic. Good reviews and bibliographical notes about the estimation problem and
the hypothesis testing procedures in hierarchical linear models are now available in Bryk
and Raudenbush (1992), Longford (1993), Goldstein (1995), Verbeke and Molenberghs
(1997), Khuri et al., (1998), Rencher (2000) and Gibbons (2001).

3 Strategies for data analysis of growth curves in a two-way
classification

Misconceptions and misuses in fitting complex models are very frequent in all areas of
application, but specifically in growth curves analysis, The model proposed here, for an
adequate use in a particular modeling process, requires an integrated data analysis strat-
egy. Although specially tailored software, some general methodological guidelines, and
application examples are currently available (see, e.g., Lindsey, 1993; Diggle et al., 1994;
Hand and Crowder, 1996), frequent problems in the analysis of data are encountered and
appropriate diagnostic tools to solve some of these difficulties are not readily available.
An adequate model formulation and goodness of fit evaluation (diagnostic and sensitiv-
ity analysis) require to establish a series of steps, which must begin with an intensive
exploratory data analysis. Plots and individual fits for all experimental units in each
cell in the two-way classification model will produce a general idea of the growth trend
variation between treatments. For each time period we could obtain a fit of the two-way
unconstrained means model, producing and analyzing residuals. A sample profile analysis
would produce a better preliminary view about the significance of the fixed-effects. All
the evidence in these preliminary and exploratory analyses would generally provide an
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adequate model postulation.
In order to evaluate the explanatory variables in the two-level model, a simple random

coefficient regression model fit, including only the most important variables, is suggested
as follows. Diagnostic checks and level-one residual analysis are carried out for evaluating
the goodness of fit. If an explanatory variable is added each time, then the diagnostic
checks of residuals is repeated once more. Such an iterative scheme allows us to increase
the complexity of the model in a gradual manner. When the more parsimonious model
being fitted is obtained, we need to implement a complete diagnostics check once again.
Level-one and level-two residuals would be checked and evaluated in a more careful way.
For level-one residuals, traditional diagnostics can be implemented, as checks for out-
lier identification, symmetry, normality, and the assumption of constant variance. Also,
plots against explanatory variables could be used to detect additional variables to be in-
cluded in the model. Some comments and suggestions about level-one residual analysis
are included in Goldstein (1987, 1995), Bryk and Raudenbush (1992), Longford (1993)
and Langford and Lewis (1998). Ojeda and Juárez-Cerrillo (1996) present guidelines and
exploratory multivariate techniques for diagnostic checks of level-two residuals. Shi and
Ojeda (2004) studied influence in regression models for growth curves. Predicted trend
for each individual can be obtained in order to study the predicted variability patterns,
by using multivariate techniques such as principal components analysis or cluster analysis
(see, e.g., Ramsay and Silverman, 1997).

4 An illustrative example

We use growth data from an experiment conducted at the university of Veracruz, in Xalapa,
Veracruz, México, whose objective was to study the effect of fertilization strategies on
chrysanthemum plant growth. Details about this study were reported by Fussillier (1996),
who presented a preliminary analysis of these data conducted using a two-way crossed
classification balanced (nij = 4) experiment. The experimental factors were: “fertilization
formulae”, with 2 levels (a = 2); and “base composition soil”, with 5 levels (b = 5). For
each plant in the study, height (Y ) was recorded during 15 (m = 15) consecutive weeks
(see Figure 1). Following a general strategy for statistical modeling, the proposed ANOVA
model for testing the significance of factor effects is

µij = µ + αAi + αBj + αAB(i,j)
, (8)

where µij represents the fixed-effect term due to cell-mean in an univariate ANOVA model
for each week. The results of the ANOVA F tests including the p-values are displayed in
Figure 2.

Using the evidence obtained from an exploratory data analysis, Hoerl’s linearized
curves (Daniel and Wood, 1980, pp. 20–24) were evaluated for fitting the effect of re-
sponse shapes on the time. In order to model the growth curve for each experimental
unit, we considered the linear equation:

ln(Y ) = ln(β0) + β1 ln(t) + β2t, (9)
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Figure 1: Categorized two-way crossed height trajectories for 15 consecutive weeks in a
growth of chrysanthemun plants experiments.

where t represents the corresponding time in weeks. Then the proposed one-level growth
model is:

y∗ijkt = µij + β∗
0s + β1sx1ijkt + β2sx2ijkt + eijkt, (10)

where x1ijkt = ln(t), x2ijkt = t and y∗ijkt = ln(yijkt). A simple mean model was proposed
for the random coefficients; i.e.,

β1s = γl + uls; l = 0, 1, 2; s = 1, 2, . . . , 40. (11)

The fitted model was obtained as:

ŷ∗ijkt = µ̂ij + 3.685(0.035) + 0.272(0.032)x1ijkt + 0.151(0.006)x2ijkt, (12)

where the standard errors are indicated within parenthesis just below the fitted values of
the respective parameters. Both factor effects A and B and their interaction effect AB
were highly significant. The unique significant variability in the regression coefficients was
in intercepts (σ̂2

0 = 0.0038(0.0014)), which represents 8.3% of the total error variance. Table
1 presents the fixed-effect components for the cell means µ̂ij.
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Figure 2: Plots showing the change in p-values for the significance tests associated with
A Factor, B Factor and AB interaction in an univariate two-way ANOVA for each week.

B1 B2 B3 B4 B5

A1 2.238 −0.483 −0.162 −0.164 −0.0224
A2 0.117 −0.540 −0.241 −0.298 −0.211

Table 1: Fixed-effect estimates considering A, B and AB components for each mean µij

in the two-way layout. The estimate of the standard error was 0.0373.

5 Discussion

The proposed model can be used for modelling growth trajectories using random regression
coefficients in a two-way crossed experimental design, and also for modelling the fixed-effect
component as is commonly done in agricultural studies. The family of proposed models
also includes L-degree polynomial regression models on time, which are commonly referred
to as growth models. The proposal considers the equal spacing and balanced sequences
of responses over time, but it does not require balance in the experimental design. We
have also assumed simple multivariate normal distributions among measurements and
the random regression coefficients. In many practical situations where the objective is
to study height data there are also some constraints which ought to be included in the
model. Finally, the extension of the model to a more general case follows readily (see, e.g.,
Goldstein, 1995; Hand and Crowder, 1990; Verbeke and Molenberghs, 1997).
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