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Abstract

The determination of critical points of mixtures is important for both practical
and theoretical reasons in the modeling of phase behavior, especially at high pressure.
The equations that describe the behavior of complex mixtures near critical points
are highly nonlinear and with multiplicity of solutions to the critical point equations.
Interval arithmetic can be used to reliably locate all the critical points of a given
mixture. The method also verifies the nonexistence of a critical point if a mixture of a
given composition does not have one. This study uses an interval Newton/Generalized
Bisection algorithm that provides a mathematical and computational guarantee that
all mixture critical points are located. The technique is illustrated using several ex-
ample problems. These problems involve cubic equation of state models; however, the
technique is general purpose and can be applied in connection with other nonlinear
problems.
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Resumen

La determinación de puntos cŕıticos de mezclas es importante tanto por razones
prácticas como teóricas en el modelamiento del comportamiento de fases, especial-
mente a presiones altas. Las ecuaciones que describen el comportamiento de mezclas
complejas cerca del punto cŕıtico son significativamente no lineales y con multipli-
cidad de soluciones para las ecuaciones del punto cŕıtico. Aritmética de intervalos
puede ser usada para localizar con confianza todos los puntos cŕıticos de una mezcla
dada. El método también verifica la no–existencia de un punto cŕıtico si una mezcla
de composición dada no tiene dicho punto. Este estudio usa un algoritmo denomi-
nado Newton–Intervalo/Bisección–Generalizada que provee una garant́ıa matemática
y computacional de que todos los puntos cŕıticos de una mezcla han sido localizados.
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Estos problemas cubren los modelos de ecuaciones cbicas de estado; sin embargo, la
técnica es de propósito general y puede ser aplicada en el caso de otros problemas no
lineales.

Palabras clave: Puntos Cŕıticos, Análisis de Intervalos, Métodos Computacionales.
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1 Introduction

Determination of critical points is an important problem in the chemical industry. There
are numerous studies of this phenomenon (Deiters and Schneider, 1976; Boberg and White,
1962; Hurle et al., 1977 (a,b); Nagarajan et al., 1991 (a,b); Sadus, 1994; Stockfleth and
Dorhn, 1998; Spear et al., 1971; Enick et al., 1985; Grieves and Thodos, 1962; Munoz and
Chimowitz, 1993; Teja and Kropholler, 1975; Teja and Rowlinson, 1973), and a majority
are related to the petroleum industry (Heidemann, 1975; Baker and Luks, 1980; Luks et
al., 1987; Boshkov et al., 1997, Rochocz et al., 1997). For a pure component, the critical
point is at the intersection of the spinodal and binodal curves, this is at the end of the
vapor pressure curve. In a binary mixture the liquid-vapor critical point is found at the
maximum pressure of the dew-bubble envelope. Multicomponent mixtures also have criti-
cal points, but there is no prior knowledge of their thermodynamic coordinates (Rowlinson
and Swinton, 1982). Computation of critical points for multicomponent mixtures is a dif-
ficult task due to the higher dimensionality of the problem (Heidemann, 1983; Michelsen,
1982; Modell and Reid, 1983) that increases with the number of components. The critical
points computed may be stable, unstable or metastable.

The equations that describe critical points are highly non-linear and numerous tech-
niques have been used to solve this problem. Two of the better known computational
approaches are those by Heidemann and Khalil(1980) and Hicks and Young (1977). In
general these methods cannot guarantee the existence or uniqueness of a critical point
for a given mixture. Binary mixtures may have both low and high temperature critical
points. These usually would correspond to vapor-liquid and liquid-liquid critical points.
The classification of high-pressure binary mixtures (Scott and van Konynenburg, 1970;
van Konynenburg, 1968) is based on the location and existence of critical points.

Experience with commercial software indicates that it cannot easily compute multiple
critical points without reinitializing and judicious initial guesses (Hytoft and Gani, 1996).
There is no information as to how many critical points may be located in one region, thus
there is no previous information to know how many initial guesses are necessary. As it will
be shown later, we have found as many as three critical points for some binary mixtures.
The solution procedure by Heidemann and Khalil (1980) was adopted in this paper to
determine critical points. Their approach is dominant in the literature due to its simplicity
of implementation and clear theoretical foundation, and it is available in the program critpt
that is a part of the IVC-SEP simulation package (Hytoft and Gani, 1996; Michelsen,
1984). This algorithm is designed to determine only higher temperature critical points,
and it uses a built-in selection for the initial values of the critical temperature and mole
volume. However for multiple critical points, the algorithm needs to be reinitialized, and
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the code altered to permit input of new initial guesses. In addition, there are no heuristics
to guide our initial estimates to compute multiple critical points. We prefer this approach
based on our experience implementing other strategies based on determinant forms (Modell
and Reid, 1983). These resulted in slower and computationally more expensive options
specially for mixtures with more than three components and multiple critical points. In
none of the references cited here, there is a report of multiple critical points for mixtures.
In our results section, there are several cases with more than one critical point and there
is a case with three stable critical points for the H2S-CH4 binary system.

We present the computation of critical points by the Interval-Newton Generalized Bi-
section (IN/GB) method (Kearfott and Novoa, 1990) using the formulation of Heidemann
and Khalil (1980). The advantages of our approach are: there is no need for an initial
guess of temperature and volume, all critical points in a given domain can be determined
without reinitializing the algorithm, and in absence of a critical point, there is a math-
ematical guarantee that there is no critical point. These characteristics exceed those of
most other real arithmetic methods. We show the effectiveness of the algorithm with bi-
nary, ternary and a quaternary mixture. All computations were performed in a Ultra 30
Sun workstation.

2 Background

2.1 Interval mathematics

The IN/GB method (Neaumier, 1990; Moore, 1966; Hansen, 1992; Hua et al., 1998;
Knuppel, 1994; Schnepper and Stadtherr, 1996; Kearfott, 1987, 1989, 1990) can find the
solutions to a system of non-linear equations with mathematical certainty and without the
need of initial guesses. The only information needed is the domain of the variables.

A real interval, X, is the set of all real numbers lying between an upper and lower
bound:

X = [l1, l2] = {x ∈ R|l1 6 x 6 l2} , where l1, l2 ∈ R and l1 6 l2.

A n-dimensional real interval vector X = {X1,X2, . . . ,Xn}T has n real intervals. An
inteval vector is also called n-dimensional box. In this section the lower case quantities are
real numbers, and the upper case quantities are intervals. Underlined lower case letters
identify vectors of real numbers.

We start with a system of non-linear equations f(x) = 0 with x ∈ X(0) where X(0) is

the initial n-dimensional box. The kth iteration in the IN/GB method computes N (k) by
solving the following system of equations (Kearfott, 1996):

F ′(X(k))(N (k) − x(k)) = −f(x(k)) (1)

F ′(X(k)) is the interval extension of the real-number jacobian matrix, f ′(x), over the
interval X(k). x(k) is an array of real numbers that is usually the midpoint of X(k).
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A range test is applied before evaluating Eq. 1. This test consists of evaluating the
system of equations f(x) = 0 over the desired interval and if zero is contained inside the
interval image f(X) then Eq. 1 proceeds. Otherwise the interval box is discarded.

N (k) is computed and intersected with X(k). Any roots, x∗, inside X(k) must be in
their intersection, x∗ ∈

{
X(k) ∩ N (k)

}
. There are three possible cases for the intersection

of N (k) and X(k) as shown in Table 1.

Case Interpretation
N (k) ⊂ X(k) A unique root exists and is estimated

by Newton–Raphson method with
real arithmetic.

N (k) ∩ X(k) = {∅} There is no root in the interval box,
and it can be safely discarded.

N (k) ⊂/ X(k) and N (k) ∩ X(k) 6= {∅} If N (k) ∩ X(k) is sufficiently smaller
(60% of original volume) then
continue to apply IN/GB, otherwise
bisect.

Table 1: Intersection of N (k) and X(k).
2.2 Critical point equations

The criticality conditions can be stated in terms of the Gibbs free energy (G). However for
a pressure-explicit equation of state the Helmholtz free energy (A) is preferred. The basic
equations to solve are given in Equations 2 and 3 (Heidemann and Khalil, 1980) in those
A is the Helmholtz free energy. Aij and Aijk are the second and third order derivatives of
A with respect to composition, C is the total number of components and ∆ni, (i = 1..C) is
the change in the number of moles of the ith component. These are the second and third
order terms of the Helmholtz-free-energy Taylor’s expansion with respect to composition.

C∑

i=1

C∑

j=1

Aij∆ni∆nj = 0 (2)

C∑

i=1

C∑

j=1

C∑

k=1

Aijk∆ni∆nj∆nk = 0 (3)

It is computationally more economic to write the condition Eq. 2 in a different form
as follows:

{∆n1,∆n2, . . . ,∆nC}





A11 A12 · · · A1C

A21 A22
...

. . .
...

A(C−1)(C−1)

Anc1 · · · A(C)(C)









∆n1

∆n2
...

∆nC





= 0. (4)
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We assume that the first term of Eq. 4 is not a null vector. Then the remaining
matrix-vector product must generate the null vector to satisfy the equality in Eq. 4, this
is, 




A11 A12 · · · A1C

A21 A22
...

. . .
...

A(C−1)(C−1)

AC1 · · · A(C)(C)









∆n1

∆n2
...

∆nC





=





0
0
...
0





(5)

which can be written as,

C∑

j=1

Aij∆nj = 0, i = 1, . . . , C. (6)

Equations (3) and (6) are more computationally economic than (2) and (3). Nonethe-
less, we found that the computational time even for binary systems were of several minutes.

Dramatic improvements in computation times were achieved by making the following
modifications 1) normalizing the volume domain using the van der Waals mole volume, 2)
normalizing the temperature by a value of 200 K, and 3) using the expressions of Michelsen
and Heidemann (1981) for the critical point conditions.

The expressions of Michelsen and Heidemann (1981) to compute critical points are:

C∑

j=1

Aij∆nj =
RT

n

(
∆ni

yi
+ F1

(
βiN + β

)
+ βi F 2

1 β

)
(7)

+
a

bn


βiβF3 −

F5

a

C∑

j=1

aij∆nj + F6

(
βiβ − αiβ − αβi

)

 , i = 1, . . . , C

C∑

i=1

C∑

j=1

C∑

k=1

Aijk∆ni∆nj∆nk =
RT

n2


−

C∑
i=1

∆n3
i

y2
i

+ 3N (βF1)2 + 2(βF1)3


 (8)

+
a

n2b
(3β2(2α − β)(F3 + F6) − 2β3

F4 − 3βaF6).

The last equation is the correct form of the third order term of the Taylor’s expansion
of the Helmholtz free energy. The original paper has an error in their last term. The
terms are defined in the Appendix.

The values of ∆ni are normalized with the following requirement,

C∑

i=1

∆n2
i − 1 = 0. (9)
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We computed the values of temperature (T ), volume (V ) and composition variation
vector (∆ni) that satisfy Eqs. (7)-(9) at a given composition. Expressions for all of the
terms are given in Stradi (2000) and in the Appendix. Variable ranges and parameters val-
ues are given in Table 2. Critical temperatures, pressures and acentric factors were taken
from Reid et al. (1987). Equations (7)-(8) are more compact because a number of terms
are cancelled out in the process of deriving the equations. The result is a smaller compu-
tational requirement and tighter bounds in the interval computations when compared to
Eqs. (3) and (6).

Equations (7)-(9) are better suited for interval arithmetic. The derivatives with respect
to temperature, T , and volume, V , and change in the number of moles, ∆ni, are given in
Stradi (2000). In this short communication, there are the results for binary mixtures of
methane and hydrogen sulfide, although the research project also looked at more complex
systems successfully. The stability of the mixture, at pressures greater than zero, can be
tested by tangent plane distance analysis (Hua et al., 1996). The tangent plane distance
for mixtures of methane and hydrogen sulfide are presented in this article.

An alternative procedure expresses Equations (2) and (3) in determinant forms. The
expressions were developed by Reid and Beegle (1977) and are equivalent to those of
Heidemann and Khalil (1980).

3 Results and discussion

We implemented Eqs. 7-9 with the IN/GB method. The variable ranges are given in
Table 2. Negative pressures for critical points correspond to demixing of a liquid into two
other liquid phases. Fluids at negative pressures are metastable or unstable with respect
to the liquid at the same temperature and not in tension (Imre et al., 1998, Debenedetti
1996). All of the critical points at positive pressures are stable unless indicated otherwise.

3.1 Methane/hydrogen sulfide binary mixture(kij = 0.08)

The critical points of a series of binary mixtures of methane and hydrogen sulfide are shown
in Table 3. The pressure versus temperature diagram, constructed with the computed
critical points, for this binary mixture is shown in Fig. 1. The Redlich-Kwong-Soave
equation of state (SRK-EOS) (Reid et al., 1987) was used to model both liquid and gas
phases. In the composition range of 0.53 to 0.84 mole fraction of methane, we found no
critical points. Our results are in agreement with those of Heidemann and Khalil (1980).
Computational times varied from 0.52 to 38.99 s.

In Figure 2, the pressure versus composition diagram is shown at 208.15 K. The pres-
sure versus composition diagrams were generated using LNGFLASH, which is a part of the
IVC-SEP simulation package (Hytoft and Gani, 1996). The Gibbs energy of mixing is
shown in Fig. 3. At a methane mole fraction of 0.49, the curve is close to horizontal what
is usually the case at stable critical points. The tangent plane distance for a methane feed
of 0.49 is shown in Fig. 4. The tangent plane distance is always positive, and it is zero
only at the feed; therefore, the feed is stable. In Figure 5, the pressure versus composition
diagram at 190.98 K is shown. The critical point at 22.5 bar is an unstable critical point
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because the feed would split into liquid and gas phases. There is a three-phase line at
41.22 bar; above this pressure liquid-liquid and vapor-liquid envelopes are found. The
liquid-liquid envelope does not have a critical point. The vapor-liquid locus has a critical
point at 46.4 bar and a mole fraction of methane of 0.997.

The program lngflash, which is a part of the IVC-SEP simulation package (Hytoft
and Gani, 1996), was used to generate the pressure versus composition diagrams.

4 Conclusions

This paper discussed the computation of critical points using the RKS equations of state
and demonstrated that interval mathematics can be used to solve this highly non-linear
problem. Via interval arithmetic, the problem was solved without the need of any kind
of initial guess or reinitializing. This implementation can find both lower and higher tem-
perature critical points. Additional results not presented here had computational times
of less than 800 s for binary mixtures with a single critical point and less than 3200 s
when there were several critical points. Inclusive in this development was the guarantee
of convergence and existence within the variable domains. Consequently, in those cases
where no critical points were found, we can assert with mathematical certainty that there
are not any critical points within the chosen domain. A key step in our implementation
was the implementation of compact expressions for the function computations and jaco-
bian evaluations. These expressions minimized repetition of terms in the equations and
permitted to compute tighter bounds for the functions and Jacobian elements.

Variable Range
Mole volume(1) 1.1-4.0 b
Temperature (K) 110-800
∆n1 0-1
∆ni

(2) (-1)- 1
Binary interaction parameters

(kij)
H2S CH4

H2S 0.0000 0.08(3)

CH4 0.08(3) 0.0000
(1) ’b’ is the van der Waals mole volume of the mixture.
(2) ∆nj is any of the 2nd-nth composition changes.
(3) parameters kij for the Redlich-Kwong-Soave equation of state.

Taken from Hua et al. (1996).

Table 2: Variable ranges and binary interaction parameters for the Redlich-Kwong-Soave
equation of state.
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Table 3: Critical points for mixtures of methane and hydrogen sulfide (CH4-H2S)
Feed Composition vdWMV ∆n1 ∆n2 Critical Critical Critical Total

(cm3/gmol) Volume Temperature Pressure time
(cm3/gmol) (K) (bar) (s)

XCH4
XH2S bmixture

0.998 0.002 29.82 0.9999 0.0042 114.26 190.82 46.3 0.522

0.97 0.03 29.82 0.9977 0.0682 107.70 196.74 50.4 1.422

0.9475 0.0525 29.83 0.9916 0.1292 102.18 201.37 53.9 3.154

0.94 0.06 29.83 0.9884 0.1517 100.30 202.86 55.1(*) 4.065

0.93 0.07 29.83 0.9830 0.1837 97.75 204.78 56.7(*) 5.640
0.6185 0.7858 44.72 114.77 -283.6

0.86 0.14 29.85 0.8651 0.5016 77.95 213.71 65.5(*) 20.912
0.6003 0.7998 56.59 181.31 -1.7

0.85 0.15 29.85 0.8189 0.5739 74.03 212.99 64.5(*) 25.368
0.6239 0.7815 59.41 190.98 22.5(*)

0.84 0.16 29.86 NCP 38.993

0.75 0.25 29.88 NCP 14.481

0.53 0.47 29.94 NCP 19.640

0.52 0.48 29.94 0.2017 -0.9795 59.26 270.02 146.1 35.049
0.2874 -0.9578 54.94 260.27 149.0

0.51 0.49 29.94 0.1352 -0.9908 63.37 279.25 145.0 27.800
0.3896 -0.9210 50.31 249.01 160.1

0.49 0.51 29.95 0.6814 -0.7319 34.89 208.15 1800.2 26.401
0.5229 -0.8524 44.26 231.67 230.4
0.0846 -0.9964 67.59 288.86 144.0

0.36 0.64 29.98 0.0628 -0.9999 83.21 323.07 132.6 8.866

0.229 0.771 30.00 0.0435 0.9999 95.58 345.50 117.1 4.869

0.24 0.76 30.01 0.0412 0.9999 94.58 343.86 118.4 5.142

0.09 0.91 30.05 0.0297 0.9999 107.91 363.58 100.0 1.953

NCP: no critical point was found.
vdWMV: van der Waals molar volume of the mixture.
(*) Unstable critical points.
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Figure 1: Pressure versus temperature diagram for CH4/H2S binary mixtures.
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A Appendix

We have the following equations used in the computation of critical points,
C∑

j=1

Aij∆nj =
RT

n

(
∆ni

yi
+ F1

(
βiN + β

)
+ βiF

2
1 β

)
(10)

+
a

bn


βiβF3 −

F5

a

C∑

j=1

aij∆nj + F6

(
βiβ − αiβ − αβi

)

 , i = 1, . . . , C.

C∑

i=1

C∑

j=1

C∑

k=1

Aijk∆ni∆nj∆nk =
RT

n2


−

C∑
i=1

∆n3
i

y2
i

+ 3N(βF1)2 + 2(βF1)3


 (11)

+
a

n2b
(3β2(2α − β)(F3 + F6) − 2β3

F4 − 3βaF6).

where,

C: total number of components.

Aij: second order derivative of the Helmholtz free energy with respect to the number of
moles of species i and j.

∆nj: change in total number of moles of species j. This is used in the context of a Taylor
series expansion of the Helmholtz free energy in terms of composition.

R: ideal gas constant.

T : absolute temperature.

n: total number of moles.

ni: number of moles of species i. Analogous meaning for other subindices.

N : parameter used in the equations for the computation of critical points, it is defined as,

N =
C∑

i=1

∆ni

yi: mole fraction of component i. Analogous meaning for other subindices.

a: average energy parameter of the equation of state for the mixture of components. This
is computed using standard van der Waals mixing rules:

a =
C∑

i=1

C∑

j=1

ninj

n2
aij

aij = (aiaj)
0.5 (1 − kij)
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aij: energy of interaction parameter between species i and j.

ai: energy parameter of species i. The meaning is the same for other subindices. It is
computed using the following correlation:

ai =
(

(RTci)
2η

Pci

)[
1 + ci

(
1 −

(
T

Tci

)0.5
)]

η = 0.45748 and ci = 0.48 + 1.574wi − 0.176w2
i , for the Redlich-Kwong-Soave Equa-

tion of State.

wi: accentric factor of species i.

Tci: critical temperature of species i.

Pci: critical pressure of species i.

kij: binary interaction parameter between species i and j.

αk: parameter used in the equations for the computation of critical points, it is defined
as,

αk =

C∑
i=1

yiaik

a
.

α: parameter used in the equations for the computation of critical points, it is defined as,

α =
C∑

i=1

∆niαi.

a: parameter used in the equations for the computation of critical points, it is defined as,

a =
1
a

C∑

i=1

C∑

j=1

∆ni∆njaij .

b: average van der Waals mole volume of the Equation of State. This is computed using
standard van der Waals mixing rules,

b =
nc∑

i=1

(
ni

n

)
bi.

bi: van der Waals mole volume of species i. This is computed as follows,

bi = 0.08664RTci/Pci , for the Redlich-Kwong-Soave equation of state.
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βi: parameter used in the equations for the computation of critical points, it is defined as,

βi =
bi

b
.

β: parameter used in the equations for the computation of critical points, it is defined as,

β =
C∑

i=1

∆niβi.

F1−6: auxiliary functions used in the computation of critical points, they are defined as,

F1 =
1

K − 1

F2 =
2

D1 − D2

(
D1

K + D1
− D2

K + D2

)

F3 =
1

(D1 − D2)

((
D1

K + D1

)2

−
(

D2

K + D2

)2
)

F4 =
1

(D1 − D2)

((
D1

K + D1

)3

−
(

D2

K + D2

)3
)

F5 =
2

(D1 − D2)
ln
(

K + D1

K + D2

)

F6 =
(

2
(D1 − D2)

)((
D1

K + D1
− D2

K + D2

)
− ln

(
K + D1

K + D2

))
.

K: dimensionless volume, it is defined as,

K =
V

nb
.

D1−2: parameters of the equation of state. Their values are calculated with the following
formulas,

D1 =
uo +

√
u2

o − 4wo

2

D2 =
uo −

√
u2

o − 4wo

2
where, uo = 1 and wo = 0, for the Redlich-Kwong-Soave equation of state.

δij: Kronecker delta operator, which is defined as,

δij =
{

i = j, δij = 1
i 6= j, δij = 0.


