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Abstract

We consider the statistical supervised classification problem from a dy-
namical systems approach. We assume that two classes exist and that, for
each one, a multivariate normal distribution determines the probability to
be in a certain region in the n dimensional real vector space. These density
functions are the potentials of corresponding gradient vector fields for each
class; we construct a “classifying vector field” as a suitable weighted mean
of them. From data known in the literature, we estimate the population pa-
rameters, and the classes are successfully distinguished; we compute and
present confusion matrices. A one and two-dimensional analysis is given.

Keywords: supervised statistical classification; multivariate normal distribution;
vector fields; attractors; bifurcation; dynamical systems.

Resumen

Consideramos el problema de la clasificación estadística supervisada
desde la perspectiva de los sistemas dinámicos. Suponemos la existen-
cia de dos clases cuyas poblaciones se distribuyen como normales en un
espacio real de dimensión n. Estas funciones de densidad son los poten-
ciales de los correspondientes campos gradientes de cada clase; construí-
mos el “campo vectorial clasificante” como un campo promedio con pesos
apropiados. A partir de datos bien conocidos en la literatura, estimamos
los parámetros poblacionales y las clases son clasificadas exitosamente.
Un análisis en dimensiones uno y dos es presentado.

Palabras clave: Clasificación estadística supervisada; distribución normal mul-
tivariada; campos vectoriales; atractores; bifurcación; sistemas dinámicos

Mathematics Subject Classification: 37B25, 62G32.

1 Introduction

The present work introduces a new method to tackle the statistical classification
problem, based on the idea by René Thom [7], that any concept is an attrac-
tor, we define a suitable chosen vector field which, in fact, has attractors close
to the means of each population that is intended to be classified. Each attrac-
tor has a basin of attraction, when data has values in each of those basins, the
classifying vector field will yield to the class it supposedly belongs. Though we
can apply this technique to problems with any number of variables, and for any
number of classes, we only consider in this paper two classes and dimensions
one or two. Basins have boundaries that separate data, and in our analysis those
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boundaries become apparent, they correspond to usual phase portraits in one
and two dimensions.

Since it is not common to use the theory of dynamical systems in this context
of statistical classification, a brief introduction of the concepts used is given and
a good reference for this discipline is the book [4] (Hirsch, Smale, & Devaney,
2013). For a thorough treatment of attractors the paper [6] (Milnor, 1985) is
an excellent reference for the matter, in that paper anyone pursuing more ref-
erences will find them. For all matters classical in statistical classification, we
refer the reader to [2] (Duda, Hart, & Stork, 2001) and [8] (Trejos, Castillo, &
González, 2014).

We treat classification in dimension one for two classes, we analyze this
situation for two normal populations in a general setting, and a picture of the
power of this technique is apparent. A different insight of what happens when
the relative variance of one class is much bigger than the other, suggests that no
classification is possible since all data is attracted to just one class, this is a new
approach that may lead to distinguishing among classifiable and none situations.

In the two dimensional case, we do not give a general result of the kind we do
in the case of one dimension. Nevertheless, we apply the method to popular data
in this field [1] (Campbell & Mahon, 1974), and we analyze the phase portrait we
get by using this method. We obtain a different insight and the boundary of the
two basins, called a separatrix, appears in a natural way as the stable manifold of
a hyperbolic point. In addition, we use data from the pioneer paper [3] (Fisher,
1936) and present the confusion matrix for our classification method. We can
extend the approach in numerous ways in which not only in the parametric case,
but also in the non-parametric one, we will get a better insight of the difficul-
ties and boundaries of the classification attempt, though that is not included in
this paper.

We want to express our gratitude to the Research Office of the Anahuac
University for sponsoring this project. The authors are also indebted to Luis
Calderón Contreras for his useful help in the preparation of this paper.

2 Concepts and notation

Before we introduce this classifying method, we present a brief introduction to
concepts and notation common in both disciplines, dynamical systems
and statistics.

A vector field is a vector valued function with a vector domain in the n real
vector space F : Rn → Rn, in this context we consider differential vector fields
which define a one parameter group of diffeomorphisms Φ : A × Rn → Rn,
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where A ⊂ R that contains 0 in such a way that the following properties hold
for any t, s ∈ A, x̄ = (x1, . . . , xn) ∈ Rn such that t+ s ∈ A:

1. Φ(t+ s, x̄) = Φ(t,Φ(s, x̄)) = Φ(s+ t, x̄).

2. Φ(0, x̄) = x̄.

3. if Φt(x̄) = Φ(t, x̄) then Φ′
t(x̄) =

∂Φ(t,x̄)
∂t = F (x̄).

The curves Φt(x̄) are the integral curves or orbits of F and their importance
in this paper is crucial since they are the classifying vehicle.

Given a differentiable real valued function, f : D ⊂ Rn → R, we construct
the gradient vector field

∇f(x1, . . . , xn) =

(
∂f

∂x1
(x1, . . . , xn), . . . ,

∂f

∂xn
(x1, . . . , xn)

)
in this context, we call f the potential of ∇f . When possible, a phase portrait
will be produced where the integral curves of the vector field will make apparent
the past and future of the evolution that the vector field yields for every point x
in Rn.

A usual way to determine how the phase portrait may be is to find the isolated
zeros of the vector field, linearize it around each zero and determine its quality
by spectral analysis, that is, its eigenvalues will determine whether it is a sink
(attractor), a source (repeller), a hyperbolic point or none of them.

Given the vector field F = (F1, . . . , Fn) where each Fi is a differentiable
real valued function that vanishes only at x̄0 in a neighborhood of it, then the n

by n matrix Lx̄0 =
(
aij =

∂Fi
∂xj

(x̄0)
)

determines the linear transformation that
approximates F = (F1, . . . , Fn) near x̄0 and the eigenvalues of Lx̄0 determine
qualitatively the decomposition of a neighborhood of x̄0 in Rn in orbits that are
attracted by x̄0, orbits that are repelled by x̄0 or none. The number, counting
multiplicity, of negative eigenvalues and those whose real part is negative, in
case they are complex, determine the dimension of the subset of Rn whose orbits,
close to x̄0, are attracted by x̄0; the number of positive eigenvalues and, those
whose real part is positive, determine the dimension of the orbits repelled by x̄0.

Since in this paper we will only consider the one and two dimensions, phase
portrait of vector fields with isolated zeros are reasonable easy to achieve.

Consider two populations and suppose that they distribute as two normal
random variables X̄i = (X,Y ) ∈ R2 with means µ̄i = (µiX , µiY ), correlation
coeficients ρi, as well as covariances matrices

Vi =

(
σiXX σiXY

σiXY σiY Y

)
=

(
σiXX ρi

√
σiXXσiY Y

ρi
√
σiXXσiY Y σiY Y

)
.
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For i = 1, 2 in such a way that their probability density functions are

fi(x̄i) =
1

2π
√

det(Vi)
exp

(
−(x̄i − µ̄i)

tV −1
i (x̄i − µ̄i)

2

)
(1)

for every x̄t = (x, y) ∈ R2 where x̄t is the transponse of x̄.

Since
√

det(Vi) =
√

σiXXσiY Y (1− ρ2i ) we can also express the density.
In order to get a more compact expression we will denote:

ai =
1

2πσiXXσiY Y

√
1−ρ2i

,

qi =
1

(1−ρ2i )

[(
x−µiX√
σiXX

)2
− 2ρi

(
x−µiX√
σiXX

)(
y−µiY√
σiY Y

)
+

(
y−µiY√
σiY Y

)2
]

hence

fi(x, y) = ai exp
(−qi

2

)
and their partial derivatives are

fix(x, y) =
−ai

1− ρ2i

(
x− µiX

σiXX
− ρi

y − µiY√
σiXXσiY Y

)
exp

(
−qi

2

)
=

−1

1− ρ2i

(
x− µiX

σiXX
− ρi

y − µiY√
σiXXσiY Y

)
fi(x, y),

fiy(x, y) =
−ai

1− ρ2i

(
y − µiY

σiY Y
− ρi

x− µiX√
σiXXσiY Y

)
exp

(
−qi

2

)
=

−1

1− ρ2i

(
y − µiY

σiY Y
− ρi

x− µiX√
σiXXσiY Y

)
fi(x, y).

Hence, we can compute the gradients ∇fi = (fix, fiy) with the
formulas above.

3 Main results

We will define the classifying vector field as

CF (x̄) =

(
f1(x̄)

f1(x̄) + f2(x̄)

)
∇f1(x̄) +

(
f2(x̄)

f1(x̄) + f2(x̄)

)
∇f2(x̄). (2)

We will use it below to classify from data in a two class setting, but before
that, we will make an analysis of the behavior of this vector field in the one
dimensional space, as well as in the two dimensional space, for some theoretical
specific examples in order to get an insight of the classifying process.
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Analysis in dimension one

Let us suppose that we have two random variables in R, that are N(2, σ2) and
N(0, 1) respectively, so that the corresponding density functions are

f1(x) =
1

σ
√
2π

exp

(
−(x− 2)2

2σ2

)
f2(x) =

1√
2π

exp

(
−x2

2

)
.

The gradients are, in this case, the respective derivatives:

f ′
1(x) =

−(x− 2)

σ3
√
2π

exp

(
−(x− 2)2

2σ2

)
f ′
2(x) =

−x√
2π

exp

(
−x2

2

)
.

Our goal will be to find the isolated zeros of CF =
(

f1
f1+f2

)
f ′
1+

(
f2

f1+f2

)
f ′
2

and classify them as sinks, sources or hyperbolic by the linearization method
discussed in the last section; suppose that CF (x0) = 0, the eigenvalue of the
linear part in this case is CF ′(x0), hence, x0 is a source if CF ′(x0) > 0 and a
sink CF ′(x0); when it vanishes, it attracts on one side and repels on the other.
When we vary σ2 , starting with small values for it and keep increasing them,
we can do a graphic assisted analysis with images obtained with Mathematica.
We chose σ = 0.25, 1.2, 1.3 and obtained the following graphs 1,2,3.

Figure 1: Graph of CF for σ = 0.25. Figure 2: Graph of CF for σ = 1.2.
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Figure 3: Graph of CF for σ = 1.3.

We can see that we get three zeros being, from left to right, sink, source,
sink; these are: a point close to 0, a point between 0 and 2, and a point close to 2.
The last two zeros approach one to each other as σ increases. Finally, see Figure
4, we graphed CF when σ = 1.35, in this case, the only zero is close to 0 and it
is a source.

Figure 4: Graph of CF for σ = 1.35.

This suggests that the source and the sink coalesce as the graph becomes
tangent to the x axis and as σ increases, only the sink at 0 persists.

Another interesting observation is that the source close to 0 starts as a mild
attractor and becomes a stronger one since |CF ′(x0)| increases as σ increases.
From the classifying point of view, this is a remarkable observation. We formu-
late and prove the following

Proposition 1 Suppose we have two real random variables N(µi, σ
2
i ) for i =

1, 2 and µ1 < µ2. Each gradient, ∇fi of the density function fi, has a sole zero
at µi and it is a sink. When σi is small, the classifying field CF has three zeros
two of which are close to each µi and are sinks, the third one is a source and
lies in between the two others, as σ2 becomes relatively larger than σ1, the sink
close to µ2 vanishes, after the coalescence of the sink, and the source.
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Proof. In order to prove the proposition we will, without loss of generality,
suppose that µ1 = 0 and σ1 = 1 since what is relevant is the ratio between
the two variances. The equation CF = 0 is transcendental; so we will do a
qualitative analysis to prove the existence of solutions as well as the sign of their
eigenvalues. Our first observation is that the densities intercept in two points

x1 =
−µ2 + σ2

√
µ2
2 + 2(σ2

2 − 1) lnσ2)

σ2
2 − 1

(3)

x2 =
−µ2 − σ2

√
µ2
2 + 2(σ2

2 − 1) lnσ2)

σ2
2 − 1

. (4)

The first one lies between 0 and µ2, the second one will be either greater than
µ2 or smaller than 0 according to whether σ2 is smaller or bigger than one
respectively.

CF = 0 if and only if f1f ′
1 + f2f

′
2 = 0 . We analyze this expression under

the assumption that, σ2 ≤ 1 and when σ2 > 1 afterwards.
Case σ2 ≤ 1. The signs of f1, f ′

1, f2 and f ′
2 are all positive when x < 0

therefore f1f
′
1 + f2f

′
2 > 0 nevertheless, when µ2 > x > 0, f ′

1 < 0 , where else,
the signs of the other elements remain the same. Note that f2 and f ′

2 are very
small relatively to f1 hence, as x increases f1f ′

1+f2f
′
2 < 0. When x approaches

x1, f1 and f2 become closer in value as well as the absolute values of f ′
1 and f ′

2;
when x1 + h2 < x < µ2, for h small, we again have f1f

′
1 + f2f

′
2 > 0, by

using similar arguments we will find that when µ2 + h2 < x, for h small,f1f ′
1 +

f2f
′
2 < 0 and the sign will not change any more since both densities decrease

when µ2 < x. When the variance is one the sole zero is µ2

2 and the analysis is
essentially the same. These all imply that we will end up with three zeros, from
left to right, a sink, a source and a sink, see Figure 5.

Figure 5: In orange the density of X1, in green the density of X2 and CF in blue with
σ small.

Case σ2 > 1. As σ2 increases we get a similar situation as before but as
f ′
2 becomes sufficiently small, the term f2f

′
2 is smaller, in absolute value, than
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f1f
′
1 so f1f

′
1 + f2f

′
2 < 0, this is a continuous process hence, at some point,

f1f
′
1 + f2f

′
2 = 0 but turn back to f1f

′
1 + f2f

′
2 < 0, that is the point where

coalescence occurs, see Figure 7.

Figure 6: Graph as σ increases. Figure 7: Graph when coalescense occurs.

This proposition is very important since it asserts that classification using the
classifying field is not always possible due to the fact that one class will never be
achieved by the orbits of CF , and this fact is intrinsic to the parameters relation
between each other. This remark, we hope, will help to get a deeper insight to
the one dimension classification problem.

Analysis in two dimensions

In order to deal with the two dimensional situation, we use actual data from the
very well known problem of Leptograpsus crabs treated in Campbell and Mahon
[1]. We chose two measurements of the carapace of the crabs, the rear width
(RW) and the frontal width (FL) and classify, using the classifying field, for
the crab sex. Let Ω1 be the class of females, and Ω2 the males’ class, we used
the estimated parameters, from the sample, to define the corresponding bivariate
normal densities for each class. With that information, we constructed the cor-
responding gradients vector fields and the classifying field CF . The Confusion
Matrix below was the result of classifying with CF , it is important to mention
that we only used RW and FL, two of the five variables reported in the original
paper, nevertheless the classification is fairly good.

In order to make the analysis in a clearer way, we change coordinates to get
correlation zero for the female population. Once we achieve that, we proceed to
find the zeros for our classifying field, which now has two coordinates CF =
(CF1, CF2). We can see, in Figure 8, the graphs for the zero curves for each
components where we depict the interceptions of both curves.
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Table 1: Leptograpsus crabs: Confusion matrix.

Belongs to Ω1 Belongs to Ω2

Classified into Ω1 0.85 0.90
Classified into Ω2 0.15 0.91

Figure 8: CF1 = CF2 in the attractors A1 and A2 and in the hyperbolic point H1.

We get, in the new coordinates, where both variables for the female pop-
ulation have correlation zero, two zeros, A1 = (9.2828758,−0.5591295) and
A2 = (8.822026, 0.0724417), close to the means of each class, that are attrac-
tors. A third zero, H1 = (8.17003,−0.324096), corresponds to a hyperbolic
point whose stable manifold, in this case it is a pair of integral curves that are
attracted by H1, separates the corresponding basins of attraction of A1 and A2.
Due to this flow is that classification becomes possible. We obtained the Figure
9 with Mathematica.
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Figure 9: Graph of the flow generated by CF .

The eigenvalues for the linearization were computed and are given in the
following Table 2, a detailed analysis of their absolute value help to understand
the phase portrait that we present above.

Table 2: Eigenvalues for the zeros.

Point λ1 λ2

A1 -4.80 -0.07
A2 -8.21 -0.12
H1 -0.05 4.93

We also applied this classifying method to the celebrated Fisher’s Irises data
for the Iris-setosa, which we denote by Ω1, and Iris versicolor, which we de-
note by Ω2, for this purpose we used as classifying variables, the length of the
sepal and its width. For this exercise, we found the Confusion Matrix, which we
include Table 3.
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Table 3: Fisher’s Irises: confusion matrix.

Belongs to Ω1 Belongs to Ω2

Classified in Ω1 0.98 0
Classified in Ω2 0.02 1

4 Discussion

Classical discriminant analysis assumes the observation of a p-dimensional ran-
dom vector X : Ω → Rp, defined on a sample space Ω that is partitioned into
two subsets Ω1 and Ω2. Given ω ∈ Ω such that X(ω) = x, the objective is
to infer whether ω ∈ Ω1 or ω ∈ Ω2. Let πi = Pr[Ωi] and let fi be the class
conditional density of X given Ωi; then, Bayes Theorem defines the posterior
probability for each category as

Pr[Ωi|X = x] =
πifi(x)

π1f1(x) + π2f2(x)
.

It is worth noting that the Classifying Vector Field CF (x) as given in eq. (2),
is a convex linear combination of two gradient vectors, which are weighted by
its corresponding posterior probabilities. In this sense, CF (x) can be described
as a dynamic discriminant score, that combines relevant information from Bayes
Theorem and from the gradient vectors.

An important contribution of this dynamic approach is the description of
how classification in terms of the Classifying Field is not possible when relative
heteroscedasticity tends to infinity. This is an important assertion that also makes
sense from the classical statistical perspective, since

lim
σ→∞

1

σ
exp[−x2

2σ
] = 0 , ∀x ∈ R.

Therefore, the posterior probabilities for one category tend to one, absorbing as
a direct consequence, every single observation to be classified. The discrimina-
tion of two multivariate normal densities given in terms of the Bayes Classifica-
tion rule, always generates a separatrix border that is always linear or quadratic.
Contrasting with classical discriminant analysis, dynamic classification seems to
generate basins which boundaries are not necessarily algebraic varieties. This
feature is informative, since it offers a complementary insight of the geometry
of the system, that is not obvious from a decision theoretic approach. Super-
vised classification is a fundamental problem in multivariate statistics. Classical
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textbooks generally dedicate at least one chapter to analyze this topic. The dis-
cussion is usually presented from a decision theoretic approach (see Mardia et
al. [5] and Duda et al. [2]). Here, we discussed it from an alternative perspec-
tive based on the theory of dynamical systems. The results are interesting and
clarifying.

5 Conclusion

This new approach to statistical classification encourages to a deeper use of the
method in more general settings, either in the supervised and the none supervised
situation, as well as in the parametric and nonparametric cases. More than two
classes in any finite dimension must be consider and the dynamical system theory
should be exploited.
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