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Abstract

Hrushovski showed that the theory of difference-differential fields of characteristic
zero has a model-companion, which we shall denote DCFA. We give an axiomatization
for DCFA and prove some important model-theoretic results as supersimplicity and
elimination of imaginaries. We mention some properties of the fixed field and the
constant field of a model of DCFA.
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Resumen

Hrushovski demostró que la teor̀ıa de campos diferenciales de diferencia de carac-
teŕıstica cero tiene una modelo-compaẽra, la cual denotaremos DCFA. En el presente
art́ıculo damos una axiomatización para DCFA y probamos algunos resultados modelo-
teoréticos de importancia como la supersimplicidad y la eliminación los imaginarios.
Mencionamos algunas propiedades del campo fijo y del campo de constantes de un
modelo de DCFA.

Palabras clave: Lógica matemática, teoŕıa de modelos, campos diferenciales, campos de
diferencia.
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1 Introduction

A difference-differential field is a differential field with an automorphism which commutes
with the derivation.
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E. Hrushovski proved that, in characteristic zero, the theory of difference-differential
fields has a model-companion.

In this work we give a proof of Hrushovski’s theorem: we give an explicit axiom scheme
for the model-companion of the theory of difference-differential fields of characteristic zero.
This theory is called DCFA.

Next we give a description of the algebraic closure, types, and completions of DCFA,
we define an independence relation and we mention some properties of DCFA as super-
simplicity and elimination of imaginaries. We also give some results concerning the fixed
field and the field of constants of a model of DCFA.

2 Differential Fields and Difference Fields

First we mention some results about differential algebra and the theory of differentially
closed fields. Even if some of the results hold for all characteristics we shall work in fields
of characteristic 0.

As a convention we will assume that all varieties are absolutely irreducible.
We assume that the reader is acquainted with the basic properties in differential algebra

and differentially closed fields. For results in differential algebra we refer to [7], for model-
theoretic results see [10], [11], [12] and [16].

Let (K,D) be a differential field, and let K[X]D denote the ring of differential polyno-
mials in X = (X1, · · · ,Xn). Let f ∈ K[X]D. The differential order of f , denoted ordD(f),
is the greatest integer n such that DnX appears in f with non-zero coefficient. If there is
no such n we set ordD(f) = −1.

Let I be an ideal of K[X]D. We say that I is a differential ideal if it is closed under
D. If I is a differential ideal of K[X]D, then K[X]/I is a differential ring.

Proposition 2.1 If (K,D) is a differential field, then K[X1, · · · ,Xn]D satisfies the as-
cending chain condition on radical differential ideals.

We define the D-topology of Kn (also called Kolchin topology or Zariski differential
topology), as the topology with the sets of the form VD(I) = {x ∈ Kn : f(x) = 0 ∀f ∈ I}
as basic closed sets, where I is a differential ideal of K[X1, · · · ,Xn]D. From 2.1 we deduce
that the D-topology of Kn is Noetherian.

An important result in differential algebraic geometry is Kolchin’s Irreducibility The-
orem, see e.g. [10], Chapter II, Appendix C.

Proposition 2.2 Let (K,D) be a differential field, and let V be an algebraic variety
defined over K. Then V is irreducible in the D-topology.

Definition 2.3 Let (K,D) be a differential field, and let V ⊂ An be a variety, let F (X)
be a finite tuple of polynomials over K generating I(V ) where X = (X1, · · · ,Xn).

1. We define the first prolongation of V , τ1(V ) by the equations:

F (X) = 0, JF (X)Y t
1 + FD(X) = 0
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where Y1 is an n-tuple, FD denotes the tuple of polynomials obtained by applying D
to the coefficients of each polynomial of F , and JF (X) is the Jacobian matrix of F
(i.e. if F = (F1, · · · , Fk) then JF (X) = (∂Fi/∂Xj)1≤i≤k,1≤j≤n).

2. For m > 1, we define the m-th prolongation of V by induction on m:

Assume that τm−1(V ) is defined by F (X) = 0, JF (X)Y t
1 + FD(X) = 0, · · · ,

JF (X)Y t
m−1 + fm−1(X,Y1, · · · , Ym−2) = 0. Then τm(V ) is defined by:

(X,Y1, · · · , Ym−1) ∈ τm−1(V )

and
JF (X)Y t

m + JD
F (X)Y t

m−1 + Jfm−1(X,Y1, · · · , Ym−2)(Y1, · · · , Ym−1)t

+fD
m−1(X,Y1, · · · , Ym−2) = 0.

3. Let W ⊂ τm(V ) be a variety. We say that W is in normal form if, for every
i ∈ {0, · · · ,m− 1}, whenever G(X,Y1, · · · , Yi) ∈ I(W ) ∩K[X,Y1, · · · , Yi] then

JG(X,Y1, · · · , Yi)(Y1, · · · , Yi+1)t +GD(X,Y1, · · · , Yi) ∈ I(W ).

4. Let W ⊂ τm(V ) be a variety in normal form.
A point a (in some extension of K) is an (m,D)-generic of W over K if
(a,Da, · · · ,Dma) is a generic of W over K and for i > m, we have

tr.dg(Dia/K(a, · · · ,Di−1a)) = tr.dg(Dma/K(a, · · · ,Dm−1a)).

We give now an axiomatization for the theory of differentially closed fields DCF of
characteristic zero due to Pierce-Pillay ([12]).

Theorem 2.4 Let (K,D) be a differential field. K is differentially closed if and only if K
is algebraically closed and for every variety V , if W is an irreducible algebraic subvariety
of τ1(V ), such that the projection of W onto V is dominant, then there is a ∈ V (K) such
that (a,Da) ∈W .

The theory of differentially closed fields is complete and ω-stable; it eliminates quan-
tifiers and imaginaries (see [11]).

Now we mention some properties about the prolongations and varieties in normal form.

Remark 2.5 1. There is a natural projection from τm(V ) onto τm−1(V ).

2. The map ρ : τm+1(V ) → τ1(τm(V )) defined by

(x, u1, · · · , um) 7→ ((x, u1, · · · , um−1), (u1, · · · , um))

defines an isomorphism between τm+1(V ) and a Zariski-closed subset of τ1(τm(V )).

The following lemma ([8], chapter X), gives us a condition to extend the derivation of
a differential field.
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Lemma 2.6 Let (K,D) be a differential field and ā = (ai)i∈I a (possibly infinite) tuple
in some extension of K. Let {Fj : j ∈ J} be a set of generators of the ideal I(ā/K) ⊂
K[Xi : i ∈ I].

Let (bi)i∈I be a tuple of K(ā) such that, for all j ∈ J

∑

i∈I

∂Fj

∂Xi
(ā)bi + FD

j (ā) = 0.

Then D extends to a unique derivation D∗ on K(ai)i∈I , such that D∗ai = bi for all i ∈ I.

Lemma 2.7 Let D : K → U be such that for all a, b ∈ K, D(a + b) = Da + Db(∗) and
D(ab) = aDb+ bDa(∗∗). Let a ∈ U .

1. If a is transcendental over K, and b ∈ U , then there is D1 : K(a) → U extending D
and satisfying (∗) and (∗∗) such that D1a = b.

2. If a is algebraic over K, then there is a unique extension D1 of D to K(a) satisfying
(∗) and (∗∗).

Proof:
(1) For f(a) ∈ K(a), set D1(f(a)) = f ′(a)b+ fD(a). Since a is transcendental over K,

one checks easily that (∗) and (∗∗) hold.
(2) Let f(X) =

∑n
i=0 aiX

i be the monic minimal polynomial of a over K. We define
D1a = −f ′(a)−1fD(a). Every element of K(a) can be written

∑n−1
i=0 bia

i where the bi are
in K. We then set

D1(
n−1∑

i=0

bia
i) = −

n−1∑

i=0

(D(bi)ai + ibiD1(a)ai−1).

Clearly, D1 satisfies (∗), and to check that is satisfies (∗∗), it suffices to show that D1(an) =
nD1(a)an−1. Since an = −

∑n−1
i=0 aia

i, we have

D1(an) = −
n−1∑

i=0

(D(ai)ai + iaiD1(a)ai−1)

= −fD(a) − (f ′(a) − nan−1)D1(a)

= nan−1D1(a).

�

Proposition 2.8 Let (U ,D) be a saturated model of DCF, let K = acl(K) ⊂ U , let V
a smooth variety, and W a subvariety of τm(V ) both defined over K. If W is in normal
form, then W has an (m,D)-generic in U .
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Proof:
We will construct a differential field containing K, and which contains an (m,D)-

generic of W . We work in some large algebraically closed field containing K, and choose
a generic (a, b1, · · · , bm) of W over K. Since W is in normal form, by 2.6 we define
D : K(a, b1, · · · , bm−1) → K(a, b1, · · · , bm) by setting Da = b1 and Dbi = bi+1, and so that
it satisfies (∗) and (∗∗).

Let vm ⊂ Dma be a transcendence basis of bm over K(a, b1, · · · , bm−1) and let (vn)n>m

be a set of tuples of the same length as vm such that for all natural n > m the elements of vn

are algebraically independent over K(a, b1, · · · , bm, vm+1, · · · , vn−1). By 2.7, the map D on
K(a, b1, . . . , bm−1) extends (uniquely) to a map D1 defined on L = K(a, b1, · · · , bm, vn)n>m

which sends vn to vn+1 for n ≥ m and satisfies (∗) and (∗∗). Then D1 is a derivation of
L, and a is an (m,D)-generic of W .
�

Corollary 2.9 Let (K,D) be a differentially closed field. Let V be a smooth variety, and
W a subvariety of τm(V ) both defined over K. Then W is in normal form if and only if
{(x,Dx, · · · ,Dmx) : x ∈ V }∩W is Zariski dense in W . In particular {(x,Dx, · · · ,Dmx) :
x ∈ V } is Zariski dense in τm(V ), and dim(τm(V )) = (m+ 1)dimV

Remark 2.10 Let (K,D) be a differentially closed field and V a smooth variety in the
affine space of dimension n defined over E = aclD(E) ⊂ K. If W ⊂ τm(V ) is a variety
in normal form then all (m,D)-generics of W have the same type over E.

We introduced varieties in normal form to bypass some difficulties concerning differ-
ential ideals.

Let W ⊂ τm(V ) be a variety in normal form, and let I ⊂ K[X,Y1, . . . , Ym] its defining
ideal, which is a prime ideal. Let ϕ : K[X,Y1, . . . , Ym] → K[X]D be the K[X]-algebra
embedding sending Yi to DiX for i = 1, . . . ,m, and let J be the differential ideal generated
by ϕ(I).

Let L be a sufficiently saturated differentially closed field containing K, and con-
sider the set W defined by J . The set W may not be irreducible for the Kolchin topol-
ogy. However, it will have an irreducible component W0 with the following property:
ID(W0) is the unique prime differential ideal containing ϕ(I) and whose intersection with
K[X,DX, . . . ,DmX] equals ϕ(I). All points in the other irreducible components of W
will satisfy some additional equations of order m. Furthermore, if a is a generic of W0 over
K in the sense of the Kolchin topology (i.e., W0 is the smallest Kolchin closed set defined
over K which contains a), then a will be an (m,D)-generic of W and conversely.

Thus to each variety in normal form defined over K is associated in a canonical way an
irreducible Kolchin closed set defined over K (and therefore a unique complete type over
K). The condition of a variety being in normal form is clearly expressible by first-order
formulas on the coefficients of the defining polynomials, while it is not as immediate that
the property of differential polynomials to generate a prime differential ideal is elementary
in their coefficients.
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Lemma 2.11 Let (L,D) be a differential field, and let K be a differential subfield of L.
Let a be a tuple of L, let v ⊂ a. If the elements of Dm+1v are algebraically independent
over K(a, · · · ,Dma), then for all i ∈ {0, · · · ,m}, the elements of Div are algebraically
independent over K(a, · · · ,Di−1a) (or over K if i = 0).

Proof: By reverse induction on i it is enough to prove that the elements of Dmv are
algebraically independent over K(a, · · · ,Dm−1a).

If the elements of Dmv are algebraically dependent over K(a, · · · ,Dm−1a), then there
is a non zero polynomial P (X) ∈ K(a, · · · ,Dm−1a)[X] which is irreducible and vanishes
at Dmv. Thus JP (Dmv)(Dm+1v)t + PD(Dmv) = 0, and, as P is irreducible and we work
in characteristic zero, JP (Dmv) 6= 0. Then, since PD(Dmv) ∈ K(a, · · · ,Dma), Dm+1v
satisfies a non-trivial equation over K(a, · · · ,Dma) which contradicts our assumption.
Hence the elements of Dmv are algebraically independent over K(a, · · · ,Dm−1a).
�

Corollary 2.12 Let K be a differential subfield of (L,D), let a be a tuple of L, let dn+1 =
tr.dg(Dn+1a/K(a, · · · ,Dna)). Then (dn)n∈N is a decreasing sequence.

Proof:
Let n ∈ N. Then we have

dn+1 = tr.dg(Dn+1a/K(a, · · · ,Dna)) = tr.dg(Dn+1a/K(a, · · · ,Dn−1a)(Dna))

and the latter, by 2.11, is less or equal to tr.dg(K(a, · · · ,Dna)/K(a, · · · ,Dn−1a)) = dn.
�

Remark 2.13 Since dn is a decreasing sequence in N ∪ {∞}, there is M ∈ N such that
dn = dM for all n ≥ M . Thus a is an (M,D)-generic of the locus of (a,Da, · · · ,DMa)
over K.

Lemma 2.14 Let (K,D) a differential field and (L,D) an extension. Let b be a tuple of
L.

Assume that, for i > 1, tr.dg(Dib/K(b,Db, · · · ,Di−1b)) = tr.dg(Db/K(b)). Let a ∈
K(b) such that, for some n > tr.dg(b/K(a)) we have
tr.dg((Da, · · · ,Dna)/K(a)) = ntr.dg(Da/K(a)).

Then tr.dg((Da, · · · ,Dia)/K(a)) = itr.dg(Da/K(a)) for every i > n.

Proof:
We proceed by induction on d = tr.dg(Da/K(a)). It is clear for d = 0.
Let v ⊂ Da be a transcendence basis for Da over K(a). We can rewrite the hypothesis

of the theorem as: the elements of {Djv : 0 ≤ j < n} are algebraically independent
over K(a). And we must prove that the elements of {Djv : j ∈ N} are algebraically
independent over K(a).

Since tr.dg(v, · · · ,Dn−1v/K(a)) > tr.dg(b/K(a)), K(a, v, · · · ,Dn−1v) 6⊂ K(b). Let i
be the smallest integer such that Div 6⊂ K(b); then Div ⊂ K(b,Db). Let w0 ⊂ Div be a
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transcendence basis for Div over K(b), and let w ⊃ w0 be a transcendence basis for Db
over K(b). Let v0 ⊂ v be such that Div0 = w0, let a0 ⊂ a be such that Da0 = v0 and let
v1 = v \ v0.

Our hypothesis implies that {v, · · · ,Dn−1v} is a transcendence basis for K(a, · · · ,Dna)
over K(a); so {v1,Dv1 · · · ,Dn−1v1} is a transcendence basis for K(a,Da, · · · ,Dna) over
K(a, v0, · · · ,Dn−1v0). Both fields are contained in K(b, w, · · · ,Dn−i−1w), thus the el-
ements of {Djw : j ≥ n − i} are algebraically independent over K(a, · · · ,Dna), so
we have tr.dg(Da, · · · ,Dna/(K(a0)D(a)) = tr.dg(Da, · · · ,Dna/K(a,Da0, · · · ,Dna0)) =
ntr.dg(Da/K(a,Da0)).

By induction hypothesis applied to a and K(a0)D, the elements of {Djv1 : j ≥ 0}
are algebraically independent over K(a0)D(a); thus the elements of {Djv : j ≥ 0} are
algebraically independent over K(a), since tr.dg(a0, · · · ,Dia0/K) = (i+1)tr.dg(a0/K) for
all i > 0.
�

Corollary 2.15 Let V,W, V1 ⊂ τm(V ),W2 ⊂ τm(W ) be irreducible varieties defined over
a differentially closed field K. Let f : V → W be a rational map. Then the following
property is expressible in the first order language LD with the parameters needed to define
f, V,W, V1,W1:

V and W are smooth varieties, V1 and W1 are varieties in normal form, and an
(m,D)-generic of V1 is sent by f to an (m,D)-generic of W1.

Proof:
By the results in [15], we know that we can express in LD that V is a smooth variety,

V1 is a variety in normal form, and that a rational map between two varieties sends generic
points to generic points.

Using the characterization of varieties in normal form given in 2.3, for every m ≥ 0 we
can construct subvarieties Vm ⊂ τm(V ) and Wm ⊂ τm(W ) such that the (m,D)-generics
of Vm are exactly the (1,D)-generics of V1 and similarly for Wm and W1. By 2.14 it suffices
to say that the projection Wm → Vm is dominant, where m = dim(W ) − dim(V ) + 1.
�

Now we recall some properties of difference fields and its model theory, for a more
detailed exposition on this subject see [1] and [3]. As for differential fields, some of the
results that we recall here hold for any characteristic.

Let (K,σ) be a difference field (i. e. σ is an automorphism of K). The difference
polynomial ring over K in n indeterminates is the ring K[X]σ = K[X,σ(X), σ2(X) · · ·],
where X = (X1 · · · ,Xn). We extend σ to K[X]σ in the obvious way. This map is injective
but not surjective.

Let I be an ideal of K[X]σ . We say that I is a reflexive σ-ideal if for every f ∈ K[X]σ,
f ∈ I if and only if σ(f) ∈ I. If, in addition, for every f ∈ K[X]σ, fmσ(f)n ∈ I implies
f ∈ I, we say that I is a perfect σ-ideal. A prime ideal which is a perfect σ-ideal is called
a prime σ-ideal.

If I is a σ-ideal, then σ induces an endomorphism on K[X]σ/I.
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Proposition 2.16 ([5]) K[X1, · · · ,Xn]σ satisfies the ascending chain condition on perfect
σ-ideals.

We define the σ-topology on Kn, as the topology whose basic closed sets are Vσ(I) =
{x ∈ Kn : f(x) = 0 ∀ f ∈ I} as basic closed sets, where I ⊂ K[X]σ is a σ-ideal. Note
that if S ⊂ Kn, then Iσ(S) = {f ∈ k[X]σ : f(x) = 0∀x ∈ S} is a perfect σ-ideal, thus the
σ-topology is Noetherian.

Theorem 2.17 The theory of difference fields has a model-companion, that we shall de-
note by ACFA. It is described as follows.
(K,σ) is a model of ACFA if and only if:

1. K is an algebraically closed field.

2. (K,σ) is a difference field.

3. For every irreducible algebraic variety V , if W is an irreducible algebraic subvariety
of V × V σ, such that the projections from W onto V and V σ are dominant, then
there is a ∈ V (K) such that (a, σ(a)) ∈W .

Here V σ denotes the variety obtained by applying σ to the polynomials defining V .

Let (K,σ) a difference field, A ⊂ K. We denote by clσ(A) the smallest difference field
containing (A), and by aclσ(A) the field-theoretic algebraic closure of clσ(A).

If (K,σ) be a model of ACFA, then aclACFA(A) = aclσ(A).
ACFA is model-complete, it is not complete but its completions can easily be described

and all of them are supersimple and eliminates imaginaries.

3 Difference-Differential Fields

In this section we introduce the definitions, basic facts and main model-theoretic properties
of difference-differential fields of characteristic 0. We will work in the language Lσ,D =
{0, 1,+,−, ·, σ,D}.

Definition 3.1 A difference-differential ring is a differential ring (R,D) with an auto-
morphism σ of the LD-structure (R,D), (i.e. σ commutes with D).

If R is a field we say that (R, σ,D) is a difference-differential field.

Definition 3.2 Let (R, σ,D) be a difference-differential ring. The ring of difference-
differential polynomials in n indeterminates over R is the ring R[X1, · · · ,Xn]σ,D of poly-
nomials in the variables σi(DjX1), · · · , σi(DjXn) for i, j ∈ N.

Remark 3.3 As in sections 1 and 2, we can extend D to a derivation on R[X1, · · · ,Xn]σ,D

and σ to an endomorphism of R[X1, · · · ,Xn]σ,D which commutes with D.

Definition 3.4 Let (R, σ,D) be a difference-differential ring. Let I be an ideal of R.
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1. We say that I is a (σ,D)-ideal if it is a differential ideal and a reflexive σ-ideal.

2. We say that I is a perfect (σ,D)-ideal if it is a (σ,D)-ideal which is perfect as a
σ-ideal.

Notation 3.5 Let (K,σ,D) a difference-differential field, S ⊂ K[X]σ,D, with X = (X1, · · · ,Xn).
Let A ⊂ Kn, a ∈ Kn and let E be a difference-differential subfield of K.

1. Vσ,D(S) = {x ∈ Kn : ∀ f(X) ∈ S f(x) = 0}.

2. Iσ,D(A) = {f(X) ∈ K[X]σ,D : ∀ x ∈ A f(x) = 0}.

3. Iσ,D(a/E) = {f(X) ∈ E[X]σ,D : f(a) = 0}.

We define the (σ,D)-topology on Kn to be the topology with the sets of the form Vσ,D(S)
as a basis of closed sets.

Remark 3.6 Let (K,σ,D) be a difference-differential field, A ⊂ Kn. Then Iσ,D(A) is a
perfect (σ,D)-ideal.

Now we need some extra definitions. For the details see [4].

Definition 3.7 Let R be a commutative ring, and let C a set of ideals of R.

1. We say that C is a conservative system of ideals if:

(a) For every A ⊂ C, ∩A ∈ C.

(b) For every A ⊂ C totally ordered by inclusion, ∪A ∈ C.

2. Let C be a conservative system of ideals. We say that C is divisible if for I ∈ C and
a ∈ R we have (I : a) ∈ C.

3. Let C be a divisible conservative system of ideals. We say that C is perfect if all its
members are radical ideals.

The following is proved in [4] (pp. 798-799).

Proposition 3.8 Let (R, σ,D) be a difference-differential ring. The set of perfect (σ,D)-
ideals of R is perfect in the sense of 3.7 and it contains any perfect set of ideals.

Theorem 3.9 ([4], section 2, Theorem I) Let R be a commutative ring and C a perfect
system of ideals of R, let I ∈ C. Then I is an intersection of prime ideals of C. If C is
Noetherian this intersection can be taken finite.

Theorem 3.10 ([5], section 5, Corollary I) Let (R, σ,D) a difference-differential ring
which contains Q and such that the set of perfect (σ,D)-ideals of R satisfies the ascending
chain condition. Let (S, σ,D) be a difference-differential ring finitely generated over R
as a difference-differential ring. Then the set of perfect (σ,D)-ideals of S satisfies the
ascending chain condition.
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Corollary 3.11 Let (K,σ,D) be a difference-differential field. Then the (σ,D)-topology
of Kn is Noetherian.

Corollary 3.12 Let (K,σ,D) be a difference-differential field and let I be a perfect (σ,D)-
ideal of K[X1, · · · ,Xn]σ,D. Then I, as a perfect (σ,D)-ideal, is generated by finitely many
difference-differential polynomials.

Corollary 3.13 Let (K,σ,D) be a difference-differential field and let I be a perfect (σ,D)-
ideal of K[X1, · · · ,Xn]σ,D. Then I is a finite intersection of prime perfect (σ,D)-ideals.

Now we state Hrushovski theorem, which he proved but never published.

Theorem 3.14 (Hrushovski)
The model companion of the theory of difference-differential fields exists. We denote

it DCFA.

Now we give an axiomatization to DCFA.

Theorem 3.15 (K,D, σ) is a model of DCFA if

1. (K,D) is a differentially closed field.

2. σ is an automorphism of (K,D).

3. If U, V,W are varieties such that:

(a) U ⊂ V × V σ projects generically onto V and V σ.

(b) W ⊂ τ1(U) projects generically onto U .

(c) π1(W )σ = π2(W ) (we identify τ1(V × V σ) with τ1(V ) × τ1(V )σ) and let π1 :
τ1(V ×V σ) → τ1(V ) and π2 : τ1(V ×V σ) → τ1(V )σ be the natural projections).

(d) A (1,D)-generic point of W projects onto a (1,D)-generic point of π1(W ) and
onto a (1,D)-generic point of π2(W ).

Then there is a tuple a ∈ V (K), such that (a, σ(a)) ∈ U and
(a,Da, σ(a), σ(Da)) ∈W .

Proof:
By 2.15, these are first order properties.
First we prove that any difference-differential field embeds in a model of DCFA. By

quantifier elimination of DCF any difference-differential field embeds in a model of (1) and
(2). By the usual model-theoretic argument, it suffices to show that any instance of (3)
over a difference-differential field (K,σ,D) can be realized in an extension of (K,σ,D).

Let (K,σ,D) be a difference-differential field such that K |= ACF . Let U, V,W be K-
varieties satisfying (3). Let (U ,D) be a saturated model of DCF containing (K,D). Let
(a, b) be a (1,D)-generic of W ; then a is a (1,D)-generic of π1(W ) and b is a (1,D)-generic
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of π1(W )σ. Hence tpDCF (b/K) = σ(tpDCF (a/K)); thus σ extends to an automorphism σ′

of (U ,D) such that σ′(a) = b.
Now we shall prove that the models of DCFA are existentially closed. Let (K,σ,D)

be a model of DCFA contained in a difference-differential field (U , σ,D). Since x 6= 0 ↔
∃y xy = 1, it suffices to prove that every finite system of (σ,D)-polynomial equations with
coefficients in K with a solution in U has a solution in K. Let ϕ(x) be such a system and
let a be a tuple of U satisfying ϕ. Since σ is an automorphism, ϕ is a finite conjunction
of equations of the form f(x, · · · , σn(x)) = 0, where f is a differential polynomial; such an
equation is equivalent, modulo the theory of difference-differential fields, to a formula of
the form:

∃y0, · · · , yk−1f(y0, · · · , yk−1, σ(yk−1)) = 0 ∧
k−1∧

i=1

(yi = σ(yi−1) ∧ y0 = x).

Thus, if we replace x by (y0, · · · , yk−1) and a by (a, · · · , σk−1(a)), we may suppose
that ϕ is a finite conjunction of equations of the form g(x, σ(x)) = 0, where g(X,Y ) is a
differential polynomial over K.

Let m be sufficiently large so that X and Y appear in each g(X,Y ) with differential
order less than m, and such that, for M > m

tr.dg((DM+1a,DM+1σ(a))/K(a, σ(a), · · · ,DMa,DMσ(a))) =

tr.dg((Dma,Dmσ(a))/K(a, σ(a), · · · ,Dm−1a,Dm−1σ(a)))

and
tr.dg(DM+1a/K(a, · · · ,DMa)) = tr.dg(Dma/K(a, · · · ,Dm−1a)).

Let V be the locus of b = (a,Da, · · · ,Dma) over K, U the locus of (b, σ(b)) over K,
and let W ⊂ τ1(V × V σ) be the locus of (b,Db, σ(b), σ(Db)) over K. By construction and
choice of m, b is a (1,D)-generic of π1(W ), σ(b) is a (1,D)-generic of π2(W ) and (b, σ(b))
is a (1,D)-generic of W . By axiom (3) there is a tuple c = (c0, · · · , cm) in K such that
(c,Dc, σ(c), σ(Dc)) ∈ W . Thus (c0, σ(c0)) satisfies all the equations of differential order
less than or equal to m satisfied by (a, σ(a)); hence c0 satisfies ϕ(x).
�

Example 3.16 The following shows why we need the (1,D)-generics in our axioms,
generics are not strong enough to describe differential types. Consider the set A de-
fined by the equations σ(x) = Dx and Dσ(x) = x2. It is then given by a subvariety
W ⊂ τ(A1) × τ(A1) which is defined by the equations x2 = y1 and x2

1 = y2. The variety
W projects on each copy of τ(A1).

Let a ∈ A, a 6= 0. From σ(a) = Da one deduces that σiDja = σi+ja = Di+ja for
all i, j ∈ N. Thus σ3(a) = (Da)2 = 2aDa, which implies that Da = 2a. Thus there are
differential relations that cannot be seen from the defining equations.

Remark 3.17 If (K,D, σ) is a model of DCFA then (K,σ) is a model of ACFA .
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Proof:
Take W = τ1(U), and apply 3.15.

�

Proposition 3.18 Let (K,σ,D) be a model of DCFA , and I a perfect (σ,D)-ideal. Then
Iσ,D(V (I)) = I

Proof:
Clearly I ⊂ Iσ,D(V (I)). Let f ∈ K[X]σ,D, such that f /∈ I. By 3.13, there is a

prime perfect (σ,D)-ideal J containing I such that f /∈ J . Then K[X ]σ,D/J embeds in
difference-differential field L.

By 3.12, J is generated by a finite tuple of polynomials P (X). Let ā be the image of X
in L. Thus we have that L |= P (ā) = 0 and L |= f(ā) 6= 0. Since (K,σ,D) is existentially
closed there is b̄ ∈ K such that P (b̄) = 0 and f(b̄) 6= 0. But I ⊂ J , thus b̄ ∈ V (I), which
implies f 6∈ Iσ,D(V (I)
�

Definition 3.19 Let E ⊆ F be two difference-differential fields, let a ∈ F .

1. We define degσ,D(a/E) to be the transcendence degree of E(a)σ,D over E if it is
finite, in this case we say that a is finite-dimensional over E, otherwise we set
degσ,D(a/E) = ∞ and we say that a is infinite-dimensional over E.

2. If Iσ,D(a/E) = (0) we say that a is (σ,D)-transcendental over E, otherwise we say
that it is (σ,D)-algebraic over E.

Remark 3.20 If a is (σ,D)-algebraic over E it is not always true that degσ,D(a/E) is
finite.

Remark 3.21 There is a natural notion of (σ,D)-transcendence basis.

For the following results see [2], sections 2 and 3.

Proposition 3.22 Let K1,K2 be models of DCFA, let E an algebraically closed difference-
differential subfield of K1 and K2. Then K1 ≡E K2.

Corollary 3.23 Let E be an algebraically closed difference-differential field, then DCFA
∪qfDiag(E) is complete.

Corollary 3.24 Let (K1, σ1,D1), (K2, σ2,D2) be two models of DCFA containing a com-
mon difference-differential field (E, σ,D). Then K1 ≡E K2 if and only if (Ealg, σ1,D1) '
(Ealg, σ2,D2).

Let (K,σ,D) be a differential-difference field, A ⊂ K. We denote by clσ,D(A) the
smallest difference-differential field containing A, and by aclσ,D(A), the field-theoretic
algebraic closure of clσ,D(A).
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Corollary 3.25 Let E be a difference-differential subfield of a model K of DCFA . Let
a, b be tuples of K. Then tp(a/E) = tp(b/E) if and only if there is an E-isomorphism
between aclσ,D(E(a)) and aclσ,D(E(b)) which sends a to b.

Corollary 3.26 Let φ(x̄) be a formula. Then, modulo DCFA, φ(x̄) is equivalent to a
disjunction of formulas of the form ∃ȳ ψ(x̄, ȳ), where ψ is quantifier free, and for every
tuple (ā, b̄) in a difference-differential field K satisfying ψ, b̄ ∈ aclσ,D(ā).

Proposition 3.27 Let (K,σ,D) be a model of DCFA. Let A ⊂ K. Then the (model-
theoretic) algebraic closure acl(A) of A is aclσ,D(A).

Proposition 3.27 allows us to define the independence relation in difference-differential
fields in terms of independence relation for fields.

Definition 3.28 Let K be a model of DCFA, let A,B,C be subsets of K. We say that
A is independent from B over C, denoted A |̂

CB, if acl(A,C) is linearly disjoint from
acl(B,C) over acl(C).

Remark 3.29 The independence relation, in a model (K,σ,D) of DCFA, has the follow-
ing properties.

1. Let a be a tuple of K, and A,B ⊂ K such that a |̂
CB; let τ be an automorphism of

(K,σ,D). Then τ(a) |̂
τ(C)τ(B).

2. For all finite tuple a, and for all B there is a finite subset C of acl(B) such that
a |̂

CB

3. For all tuple a, for all set B and for all C containing B there is a tuple a′ such that
tp(a/B) = tp(a′/B) and a |̂

BC.

4. For all tuples a, b and for all C, a |̂
Cb if and only if b |̂ Ca.

5. Let a be a tuple and let A ⊂ B ⊂ C. Then a |̂
BC and a |̂

AB if and only if a |̂
AC.

The following are direct consequences of the results in [6].

Theorem 3.30 1. The independence relation defined above coincides with nonforking.

2. Every completion of DCFA is supersimple.

This theorem implies in particular that DCFA satisfies the Independence Theorem over
models; however, as in ACFA, we will show that DCFA satisfies the Independence Theorem
over algebraically closed structures, with a little more work one could also show that DCFA
satisfies the Generalized Independence Theorem over algebraically closed structures.

Theorem 3.31 If U is a saturated model of DCFA, E an algebraically closed subset of
U , and ā, b̄, c̄1, c̄2 tuples in U such that:
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1. tp(c̄1/E) = tp(c̄2/E).

2. ā |̂
E c̄1, ā |̂

E b̄ and b̄ |̂ E c̄2.

Then there is c̄ realizing tp(c̄1/E ∪ ā) ∪ tp(c̄2/E ∪ b̄) such that c̄ |̂ E(ā, b̄).

Proof:
Let c̄ be a realization of tp(c̄1/E) such that c̄ |̂ E(ā, b̄). Let A = acl(Eā), B =

acl(Eb̄), C = acl(Ec̄). Let φ1 : acl(Ec̄1) → C and φ2 : acl(Ec̄2) → C two Lσ,D(E)-
isomorphisms such that φi(c̄i) = c̄.

Let σ0 = σ|(AB)algC . Since A is linearly disjoint from acl(Ec̄1) and from C over E, we
can extend φ1 to a LD(A)-isomorphism ψ1 between acl(Ac̄1) and (AC)alg(= aclD(AC)).
Let σ1 = ψ1σψ

−1
1 ; σ1 is an automorphism of (AC)alg and agrees with σ on A and C. By

definition of σ1, ψ1 is a Lσ,D(A)-isomorphism between (acl(Ac̄1), σ) and ((AC)alg , σ1). In
the same way we define ψ2 : acl(Bc2) → (BC)alg and σ2 ∈ Aut(BC)alg.

Let L = (AB)alg(AC)alg(BC)alg (which is a differential field that extends A,B,C).
Let us suppose that there is an LD-automorphism τ of L which extends σ0, σ1, σ2. Let
(M, τ ′,D) |= DCFA contain (L, τ,D). Since τ extends σ0, by 3.22, we have tpM(AB/E) =
tpU(AB/E); since τ extend σi, the ψi’s are difference-differential field isomorphisms. Ap-
plying 3.25 we have tpM(c̄/A) = tpU (c̄1/A) and tpM (c̄/B) = tpU(c̄1/B). Also c̄ |̂ E(A,B).
Hence to finish the proof, all we have to do is show the existence of such a τ . To do this,
we will prove that σ0, σ1 have a unique extension τ1 to (AB)alg(AC)alg, and that there is
an extension τ2 of τ1, σ2 to L (Note that these automorphisms will commute with D).

For the first part it is enough to show that (AB)algC is linearly disjoint from (AC)alg

over (AB)algC ∩ (AC)alg, and that σ0 and σ1 agree on (AB)algC ∩ (AC)alg. Similarly for
the second part.

By Remark 2 of 1.9 in [1], we have

(AB)algC ∩ (AC)alg = AC (∗), (AB)alg(AC)alg ∩ (BC)alg = BC (∗∗).

Since (AC)alg is Galois over AC it implies that (AC)alg and (AB)alg are linearly disjoint
over AC; as σ0 and σ1 both extend σ on AC, they are compatible. The same argument
applies for the second part.
�

A first order theory T (in a language L) is called quantifier-free ω-stable if for any
saturated model M of T , there are only countably many quantifier free types over a
countable set. Let T be such a theory which eliminates quantifiers and imaginaries, let
Lσ = L ∪ {σ} where σ is an 1-ary fucntion symbol. Let T0 be the Lσ-theory whose
models are the structures of the form (M,σ) where M is a model of T and σ is an
automorphism of M . Assume that T has a model-companion TA. Let (M,σ) be a model
of T0. Let A = acl(A) ⊂ M and let a ∈ M . Then qftpLσ(a/A) is entirely determined
by tpT ((σi(a))i∈Z/A). Let B = dclT (A, σ−i(a)|i > 0), and consider tpT (a/B). As T is
ω-stable, there is some integer n such that tpT (a/B) is the unique non-forking extension
of tpT (a/A, σ−1(a), . . . , σ−n(a)) to B. Applying σi, this gives that tpT (σi(a)/σi(B)) is the
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unique non-forking extension of tpT (σi(a)/A, σi−1(a), . . . , σi−n(a)) to σi(B). This implies
that T0 is quantifier-free-ω-stable (and so is TA).

Remark 3.32 As DCF is ω-stable, DCFA is quantifier-free ω-stable.

Now we want to prove that DCFA eliminates imaginaries. We shall need some proper-
ties of the fundamental order for types in stable theories. The definitions and proofs can
be found in [14].

Recall that a type p(x) over some set A represents the L-formula φ(x, y) if there is a
tuple a ∈ A such that φ(x, a) ∈ p(x). We denote by β(p) the set of formulas represented
by p.

For convenience, we will define the fundamental order on types whose domain is alge-
braically closed, so that they are stationary (and definable by elimination of imaginaries
in DCF).

Definition 3.33 Let A and B be algebraically closed differential subfields of some model
(U ,D) of DCF, and let p(x), q(x) be types over A and B respectively. We write p ≤fo q
if β(q) ⊆ β(p), and β(p) ∼fo if β(p) = β(q). ≤fo is called the fundamental order.

Proposition 3.34 If A ⊂ B and q is an extension of p, one has q ≤fo p, and q ∼fo p if
and only if q is a non-forking extension of p.

If p and q are types in an infinite number of variables (xi)i∈I we say that p ≤fo q if
and only if for every finite J ⊂ I, if p′ and q′ denote the restrictions of p and q to the
variables (xi)i∈J , we have p′ ≤fo q

′.

Remark 3.35 ∼fo is an equivalence relation on the class of types in the variables (xi)i∈I .

Proposition 3.36 Every completion of DCFA eliminates imaginaries.

Proof:
Let (K,σ,D) be a saturated model of DCFA, let α ∈ Keq. Then there is a ∅-definable

function f and a tuple a in K such that f(a) = α.
Let E = acleq(α) ∩K. If α is definable over E, let b be a tuple of E over which α is

definable; then b ∈ acleq(α). Since we are working in a field, there is a tuple c of K which
codes the (finite) set of conjugates of b over α. Hence c and α are interdefinable.

Let us suppose that α is not definable over E, in particular, a is not a tuple of E. We
will show that there is a realization b of tp(a/α) such that b |̂ Ea.

We now work in the theory DCF, and replace the tuple a by the infinite tuple (σi(a))i∈Z,
which we also denote by a.

Since tp(a/α) is non-algebraic, it has a realization b such that acleq(a) ∩ acleq(b) =
acleq(α), and thus

acl(Ea) ∩ acl(Eb) = E (∗).

Choose such a b such that, if b′ satisfies the same properties, then tpDCF (b′/acl(Ea)) 6>fo

tpDCF (b/acl(Ea)).
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Let c be a tuple of K such that tp(c/acl(Ea)) = tp(b/acl(Ea)), and c |̂ Eab. Then
f(c) = f(a) and c satisfies

acl(Ec) ∩ acl(Eab) ⊂ acl(Ec) ∩ acl(Ea) = E, (∗∗)

and there is no c′ satisfying (∗∗) such that tpDCF (c′/acl(Eab)) >fo tpDCF (c/acl(Eab)).
Then tp(c/acl(Eb)) ≥fo tp(c/acl(Eab)) ∼fo tp(c/acl(Ea)). Let τ be an LD(E)-

automorphism sending b to a. Then tp(τ(c)/acl(Ea)) ∼fo tp(c/acl(Eb)), and τ(c) sat-
isfies (∗) (by (∗∗)). Hence, by maximality of tp(b/acl(Ea)) = tp(c/acl(Ea)), we get that
tp(c/acl(Eb)) ∼fo tp(c/acl(Ea)), and therefore c |̂ Eba. By elimination of imaginaries and
(∗), this implies that c |̂ Eab, and therefore a |̂

Eb.
We have shown that there is a tuple b realizing tp(a/α) independent from a over E.

But α is not E-definable, thus there is a′ realizing tp(a/E) such that f(a) 6= f(a′), and we
may choose it independent from b over E. Since tp(a/E) = tp(a′/E), there is a realization
c′ of tp(a′/E) such that f(a′) = f(c′) and c′ |̂ Ea

′; we may suppose that c′ |̂ Eb. If we
apply the independence theorem to tp(a/Eb) ∪ tp(a′/Ec′) we get a contradiction.
�

Lemma 3.37 Let (K,σ,D) be a model of DCFA, let E = acl(E) ⊂ K, and let (L, τ,D) be
a difference-differential field extending (K,σn,D), where n is a positive integer. Then there
is a difference-differential field (M,σ′,D) containing (E, σ,D) such that (σ′)n extends τ .

Proof:
For i = 1, · · · , n−1 let Li be a difference-differential field realizing σi(tpDCF (L/E)) such

that L0 = L,L1, · · · , Ln−1 are linearly disjoint over E. Let f0 = idL and for i = 1, · · · , n−1
let fi : L −→ Li be an LD-isomorphism extending σi on E.

For i = 1, · · · , n−1 let σi : Li−1 −→ Li be defined by σi = fif
−1
i−1, and let σn : Ln−1 −→

L0 be defined by σn = τf−1
n−1.

Let x ∈ E. If i = 1, · · · , n− 1 then σi(x) = fi(f−1
i−1(x)) = σi(σ−(i−1)(x)) = σ(x) ; and

σn(x) = τ(σ−(n−1)(x)) = σn(σ−(n−1)(x)) = σ(x). Hence each σi extends σ on E.
Also, we have σnσn−1 · · · σ1 = τ(f−1

n−1fn−2) · · · (f1f
−1
0 ) = τf−1

0 = τ .
Let M be the composite of L0, · · · , Ln−1. Since the Li’s are linearly disjoint over E,

M is isomorphic to the quotient field of L0 ⊗E · · · ⊗E Ln−1. There is a unique derivation
on M extending the derivations of the Li’s and there is a unique LD-automorphism σ′ of
M which coincides with σi on Li−1.
By the above (σ′)n extends τ .
�

Corollary 3.38 Let (K,σ,D) be a model of DCFA. Then, for all n ∈ N (K,σn,D) is a
model of DCFA .

Proof:
Let Σ be a finite system of (σn,D)-equations over K, and let (L, τ,D) be an extension

of (K,σn, D) containing a solution of Σ. By 3.37 there is an extension (M,σ′,D) of
(K,σ,D) such that (M, (σ′)n,D) is an extension of (L, τ,D). Thus, M contains a solution
of Σ, and since (K,σ,D) is existentially closed, it conatains a solution of Σ.
�
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4 The Field of Constants and the Fixed Field

In this section we study two special subfields of a model (K,σ,D) of DCFA: the differential
field (Fixσ,D) and the difference field (C, σ) where Fixσ is the fixed field of K and C is
the field of constants of K.
Throughout this section (K,σ,D) will denote a model of DCFA.

Proposition 4.1 (C, σ) is a model of ACFA .

Proof :
Since σ commutes with D, (C, σ) is a difference field.
Now let U, V be varieties defined over C, with U ⊂ V × V σ such that U projects

generically over V and V σ. Let W = U × (0̄) ⊂ τ1(V ×V σ). Then, by 3.15 there is a ∈ K
such that (a,Da, σ(a), σ(Da)) ∈W . Thus Da = 0 and (a, σ(a)) ∈ U .
�

Remark 4.2 Clearly the fixed field of C is C ∩ Fixσ, and as the fixed field of a model of
ACFA is pseudofinite, C ∩Fixσ is pseudofinite. Hence C ∩Fixσ ≺ Fixσ (in the language
of fields).

Remark 4.3 Fixσ is a differential field, however it is not differentially closed since it is
not algebraically closed as a field. Clearly, it is also a difference field, thus

acl(Fixσ) = aclD(Fixσ) = (Fixσ)alg .

Theorem 4.4 ((Fixσ)alg ,D) is a model of DCF .

Proof :
Let V,W be two irreducible affine varieties defined over (Fixσ)alg such that W ⊂ τ1(V )

and W projects dominantly onto V . Let k ∈ N be such that both V and W are defined
over Fixσk. Let U = {(x, x) : x ∈ V }. Then U ⊂ V × V σk

= V × V .
Let W ′ = {(y, y) : y ∈ W}. Then W ′ ⊂ τ1(U). By 3.38 (K,σk ,D) is a model of

DCFA; thus, applying 3.15 to V,U and W ′ there is a ∈ V (K) such that (a, σk(a)) ∈ U and
(a,Da, σk(a),D(σk(a))) ∈ W ′. Thus a = σk(a) and (a,Da) ∈ W . By 2.4, ((Fixσ)alg ,D)
is differentially closed.
�

Using (the proof of) 4.4, we can also axiomatize the theory of the structures (F,D),
where F is the fixed field of a model of DCFA, as follows:

1. F is a pseudo-finite field.

2. For every irreducible algebraic variety V defined over F , if W is an irreducible
algebraic subvariety of τ1(V ) defined over F , such that the projection of W onto V
is dominant, then there is a ∈ V (F ) such that (a,Da) ∈W .
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For such a structure (F,D) we can describe its completions, the types, the algebraic closure
in the same way as we did for DCFA. For instance, if F1 and F2 are two models of this
theory and E is a common substructure, F1 ≡E F2 if and only if there is an isomorphism
ϕ : Ealg ∩ F1 → Ealg ∩ F2 which fixes E. If we add enough constants (for a pseudo
finite field F we add a set of constants A ⊂ F such that FAalg = F alg), the generalized
independence theorem will hold.

Pseudo-algebraically closed structures were studied by E. Hrushovski in a preprint
of 91, to appear in the Ravello Proceedings. In [13] Pillay and Polkowska generalize
Hrushovski’s results and treat the differential case described above.

The field of constants of a model of DCF as well as the fixed field of a model of
ACFA are stably embedded, that is any definable subset of Cn (Fixσn) is definable with
parameters form C (Fixσ) in the language of fields. The same happens in DCFA for the
field Fixσ but not for the field C.

Proposition 4.5 (C, σ) is not stably embedded.

Proof:
Let a ∈ Fixσ \ C, then the set {x ∈ K : ∃y σ(y) = y ∧ Dx = 0 ∧ y2 = x + a} is

contained in C but it is not definable with parameters from C.
�

Proposition 4.6 Let A be a definable subset of (Fixσ)n. Then A is definable over Fixσ
in the language LD.

Proof :
Since DCFA eliminates imaginaries, there is a canonical parameter a for A. Since A

is fixed by σ, a is fixed by σ, thus A is (Fixσ)-definable. It is enough to show that there
exist a countable subset L of Fixσ containing a such that every LD-automorphism of
Fixσ which fixes L extends to an elementary map of some elementary extension of Fixσ.

Let L be a countable elementary LD-substructure of Fixσ containing a. In particular
L is a differential field, and acl(L) = Lalg.

Since L ≺LD
Fixσ, Lalg and Fixσ are linearly disjoint over L. If Ln is the unique

algebraic extension of L of degree n, then LnFixσ is the unique algebraic extension of
Fixσ of degree n; this implies that (Fixσ)alg = LalgFixσ.

Let τ be a LD-automorphism of Fixσ over L. Then we can extend τ to a LD-
automorphism τ̄ of LalgFixσ over Lalg. We have that τ̄ commutes with σ. Thus τ̄ is
a Lσ,D-automorphism of acl(Fixσ). Then, by 3.25, τ̄ is an elementary map.
�

Remark 4.7 Let (L,LA) be a pair of fields extending the pair of fields (Fixσ, F ixσ ∩ C)
and which satisfies: L is a regular extension of Fixσ, LA is a regular extension of Fixσ∩C,
and Fixσ and LA are linearly disjoint over Fixσ ∩ C.

Using the linear disjointness of LA and Fixσ over Fixσ∩C and 2.7, the derivation D
of Fixσ extends to a derivation D1 on L which is 0 on LA. Defining σ to be the identity
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on L, the difference differential field (L,D1, id) embeds (over Fixσ) into an elementary
extension of U . The following follows easily:

1. The pair (Fixσ, F ixσ ∩ C) is S.P.A.C., that is, if a, b are tuples in some extension
of Fixσ such that Fixσ ⊂ Fixσ(a, b) and Fixσ ∩ C ⊂ (Fixσ ∩ C)(a) are regular,
and Fixσ is linearly disjoint from (Fixσ ∩C)(a) over Fixσ ∩C; then there is a zero
(a′, b′) of I(a, b/F ixσ) such that a′ ∈ Fixσ ∩ C.

This notion was introduced by H. Lejeune (see [9]).

2. The theory of the structure Fixσ is model complete in the following languages:

(a) The language of pairs of fields with enough constants to describe all algebraic
extensions of Fixσ, and with n-ary relation symbols for all n which interpreta-
tion in (Fixσ, F ixσ ∩C) is that the elements x1, · · · , xn are (Fixσ ∩C)-linearly
independent.

(b) The language of differential fields with enough constants to describe all algebraic
extensions of Fixσ (as in this language extensions are field extensions with an
extension of the derivation this will automatically imply linear disjointness).
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100 R. Bustamante Rev.Mate.Teor.Aplic. (2007) 14(1)

[10] Marker, D.; Messmer, M.; Pillay, A. (1996) Model Theory of Fields, volume 5 of
Lecture Notes in Logic. Springer-Verlag, Berlin.

[11] Marker, D. (2000) “Model theory of differential fields”, in: Haskell, D. Pillay, A.
Steinhorn, C. (Eds.) Model Theory, Algebra, and Geometry, volume 39 of Math. Sci.
Res. Inst. Publ., Cambridge Univ. Press, Cambridge: pages 53–63.

[12] Pierce, D.; Pillay, A. (1998) “A note on the axioms for differentially closed fields of
characteristic zero”, J. Algebra 204(1): 108–115.

[13] Pillay, A.; Polkowska, D. (2004) “On PAC and bounded substructures of a stable
structure”, Preprint, University of Illinois at Urbana-Champaign, Illinois.

[14] Poizat, B. (1985) Cours de Théorie des Modèles. Une introduction à la logique
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