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Bayesian Regression in Pavement 
Deterioration Modeling: Revisiting the 
AASHO Road Test Rut Depth Model

Pavement Deterioration

Abstract

Traditional pavement deterioration modeling is normally based on 
historical condition data alone without incorporating the fundamental 
relationships between the causal factors and the response. Also, typical 
approaches do not quantify the uncertainty of the predicted response. This 
paper uses Bayesian regression for pavement deterioration modeling. 
This method is applied to an existing model for the prediction of rut depth 
progression from the AASHO Road Test. A classical regression model 
developed elsewhere is herein summarized and its results are then 
compared with those from the Bayesian regression in order to validate. 
A second model based on the entire dataset of the AASHO road test is 
used to demonstrate the advantages of such approach. The models are 
capable of employing expert criteria combined with historical knowledge 
and current observations in order estimate posterior probabilistic 
distributions for the regression coefficients of the mechanistic equation. 
The predictive model calibrated to local conditions is able to forecast 
within pre-specified confidence intervals the range of values for the 
expected deterioration. Bayesian regression modeling produces more 
reliable predictions for deterioration performance, which in turn, can be 
used to improve decision-making on road management systems.  
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Resumen

Tradicionalmente el modelaje del deterioro de pavimentos se basa en 
observaciones historicas de condicion que no incorporan las relaciones 
fundamentales entre los factores causales y la respuesta. Adicionalmente 
dichos metodos no cuantifican el nivel de incertidumbre asociado con 
la respuesta predecida. Esta investigacion utiliza regression Bayesiana 
para modelar el desempeño de pavimentos. La metodologia fue aplicada 
a un modelo existente que predice la progression de deformaciones 
permanentes del experimento de la Asociacion Americana de oficiales 
de autopistas y transportes (AASHTO por sus siglas en ingles). 
Un modelo de regression desarrollado anteriormente es resumido 
y utilizado para validar los resultados de la regression Bayesiana. 
Un Segundo modelo basado en la totalidad de la base de datos del 
experimento de la AASHTO se utilza para demostrar las ventajas del 
metodo propuesto. Ambos modelos son capaces de emplear opiniones 
de expertos combinadas con conocimiento historico y observaciones 
actuales con el fin de estimar distribuciones probabilisticas de los 
coeficientes de la ecuacion mecanistica. El modelo de prediccion asi 
calibrado a condiciones locales es capaz de predecir, dentro de rangos 
de confianza, valores de deterioro esperado. La regression Bayesiana 
produce prediciones mas confiables del deterioro y mejora la toma en 
sistemas de gestion vial. 
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Introduction

Pavement deterioration modeling can be grouped in 
basic types ranging from probabilistic and mechanistic to 
empirical (1). Markov Chain is perhaps the most popular 
probabilistic modeling technique. This technique has 
been explained by others (2, 3). The development of a 
Transition Probabilities matrix (TPM) has been the target 
of several papers (4, 5). Such mechanism captures the 
uncertainty of the response as one predicts future values 
of any response. The TPM is normally based in historical 
observations of how condition has evolved. Initial 
condition vectors (ICV) are multiplied n times by the 
matrix to obtain future conditions with immediate values 
after a survey concentrated in one cell of the ICV. Major 
drawbacks of such approach are: (a) it does not have 
a memory of the previous conditions (except the year 
immediate before), (b) the TPM is only valid for a similar 
repetition of the same levels of casual factors from the 
observations that create the TPM, hence depending on 
the assumption of “ceteris paribus”, and (c) it can not 
be used in other locations or under different conditions 
(i.e., levels of traffic, environmental exposure, pavement 
materials or structural deficiencies) because the model 
does not explicitly consider how the predictors affect 
the response (unless the TPM is calibrated for the new 
conditions).

Although purely mechanistic methods do provide 
a relationship between causal factors and a given 
response, their applicability is limited depending on the 
observed levels of the casual factors while developing the 
mechanistic equation (6). Such model fails in providing 
a measure of uncertainty, and mechanisms to calibrate 
the model parameters to local conditions. Also there are 
no guarantees that all predictors can be incorporated in 
the model. The range of applicability beyond the specific 
conditions of the empirical study is normally unclear, and 
it is difficult to adjust the model after new data becomes 



Noviembre 2012 • Nº 25 • Infraestructura Vial 29

available. Another drawback on mechanistic modeling 
is that the casual factors are normally given in terms 
of physical properties such as: pavement layer moduli, 
stresses, strains etc., rather than in explicit measures 
of distresses widely collected in pavement management 
such as roughness or deflections. Predictions from 
any deterministic or mechanistic model only provide 
the mean value, and are not capable of modeling the 
dispersion. The use of probabilistic approaches to 
address such limitations on performance modeling has 
been suggested elsewhere (7).

Empirical modeling is traditionally done by employing a 
regression technique to fits observations of a response 
to causal factors. Traditional regression modeling 
employs either: the least square or the maximum 
likelihood approach, to find the values of the coefficients 
of a given functional form (linear, exponential, potential, 
logarithmic or polynomial). According to (8), approaches 
such as maximum likelihood can work well with “models 
with few predictors” and large datasets. However, perfect 
separation and/or co-linearity issues between several 
casual factors may arise; producing bad estimation 
of the regression coefficients because of interactions 
between some predictors. A non linear transformation 
(i.e. exponential) is typically used to address this issue 
providing separation of the predictors. Other general 
concerns of regression techniques are over-fitting and 
model complexity (9). The use of Bayesian statistics 
(a form of penalized-likelihood) overcomes these 
difficulties (8). 

Objective

The objective of this paper is to present the basis and 
development of reliability based modeling employing 
Bayesian regression methodology. 

Methodology

Introduction to Bayesian Statistics

In Bayesian statistics, the estimation of the result 
before any information (from trials, experiments or field 
data collection) is available and is known as the prior, 
and is regarded as the value an individual expects for 
some outcome before seeing any evidence (data). 
The evidence (observations) from a certain number 
of trials is regarded as the likelihood [P(data/θ)] , and 
it expresses the result of a certain number of trails or 
experiments. Bayes theorem works as a mechanism 
for generating a posterior of any parameter mixing the 

prior knowledge with the likelihood, the denominator is 
regarded in literature as the normalization or marginal 
term (Equation 1). Posterior distributions are tighter 
(less disperse) than priors or likelihoods alone, therefore 
posterior takes advantage of both to obtain a better 
distribution.

[1]

Bayesian statistics is currently combined with sampling 
techniques. The whole idea of sampling is to approach 
the solution of a mathematical problem by observing 
results from a large set of trials, instead of looking for 
a close form solution. Then, when one takes a large 
amount of trials or samples (as n tends to infinitum), 
the law of large numbers apply and, one can assure 
that the results of sampling will approximate the true 
value of the unknown.  In brief, Bayesian statistics is a 
method that can learn from experience (observed data) 
and consider human opinions as a part of the analysis. 
The approach recognizes the existence of uncertainty 
in the predictors (and unobserved effects), hence the 
model takes advantage of simulation and conditional 
probabilities to produce a probabilistic representation of 
the model parameters that best fit to the observed data. 
This production of posterior probabilistic distribution for 
the parameters is equivalent to calibrating a regression 
model to local conditions, also regarded as the training 
phase (9). Such calibrated model can be used to predict 
responses for a new set of predictors. 

Bayesian inference has taken advantage of Markov 
Chain Monte Carlo for solving complex problems (11). 
The simulation is done through the Metropolis-Hasting 
algorithm or its simplified form: the Gibbs algorithm. 
Results are given after the convergence of the MCMC 
chain(s). Different mechanisms are used for convergence 
such as observing various chains with good mixture and 
stable values of the posterior; also called the stationary 
state (12). This type of modeling does not assume that 
the response is concentrated in a point estimate as the 
mechanistic or deterministic modeling do. Bayesian 
regression modeling addresses the problems of the 
deterministic and mechanistic approaches by providing 
an updatable mechanism for mixing expert criteria with 
available observations to produce a locally calibrated 
model capable of representing uncertainty in the 
coefficients and in the response. 

P( θ / Data) =
P( data / θ ) xP ( θ )

∫P( data / θ ) xP( θ ) xdθ
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Bayesian Regression 

Bayesian regression is somehow similar to traditional 
regression in the sense that a functional form (equation) 
relates a response to casual factors. However, Bayesian 
regression embeds the functional form as the mean 
of a probabilistic distribution of the predictions and, 
incorporates the precision (squared inverse of the 
standard deviation) to capture uncertainty. Bayesian 
modeling normally employs the normal distribution for 
obtaining estimations for the mean response (or the 
expected value) of a stochastic variable. Assuming: (a) 
that one has a sample of n observations of a response 
(or a parameter) xi with mean￼ , (b) that this response 
(or parameter) is believed to follow a normal distribution 
with mean θ and squared standard deviation σ2 and, (c) 
that the prior for each mean θ is normally distributed 
N(μ,σ2/n0) [normal with mean μ and standard deviation 
σ2/n0]. Then if the standard deviation of the likelihood 
and the prior is the same, and the prior comes from a 
sample of size n0, Equation 2 is said to estimate the mean 
posterior distribution of the corresponding response (or 
parameter) by mixing the information contained in the 
prior with the likelihood. The expressions contained in 
Equation 2 can be expanded for the case of different 
standard deviations and reformulated in a matrix form 
for several parameters. As noticed, the variance of the 
posterior is smaller, because it combines two sources 
of information. The mean is the product of the prior 
mean (n0μ) plus the likelihood mean (￼ ), weighted by 
their relative sample size, from where the means were 
estimated. As n goes to infinity the estimated mean 
posterior distribution looks like the likelihood (i.e. effect 
of prior vanishes). As n0 tends to zero the prior variance 
becomes larger and the distribution becomes flatter 
which is called a non-informative prior (13).

[2]

It can be shown (13) that Bayesian predicted responses 
are centered on the posterior mean with variance equal 
to the sum of the posterior variance and the sample 
variance. Bayesian regression is therefore capable of 
estimating stochastic variables (i.e., the coefficients of 
the functional form). This concept of stochastic variables 
can be extended to include missing data. Bayesian 
regression requires the specification of a functional form 
that relates the response with the causal factors and a 
dataset containing observed causal factors, responses 
and indexes for every modeled level. It also needs the 

specification of prior distributions for every stochastic 
node, the precision and the error term if any. Priors 
are normally based on expert criteria or independent 
studies (informative) or just widely specified to cover the 
practical space of every stochastic node. However, the 
specification of the prior has a significant impact in the 
prediction if the model is based on a reduced amount 
of observations. Bayesian regression also requires 
a starting point for any stochastic variable. Missing 
predictors should be specified with “NA” and should be 
assigned a stochastic node which in turn requires an 
initial estimate. Under normal conditions initial points 
can be at any level of practical values without affecting 
the prediction because their influence vanishes quickly 
as the observations take over.

Results from Bayesian regression can be visualized 
via point estimates for every stochastic node (i.e., 
mean, media, and values for the Confidence Interval). 
It is possible to examine the posterior distribution of any 
parameter in order to verify if it follows the assumed 
probabilistic distribution. Also, it is possible to fit a 
regression to the scatter of observations for any causal 
factor and the response. Model checking is performed 
by observing the MCMC error, chains history, and the 
Deviance Information Criterion (DIC) which balance 
model complexity and goodness of fit (13).

Major advantages of Bayesian regression are: (a) it 
estimates model parameters from prior (initial opinion) 
and the observations which is equivalent to performing 
a calibration to local conditions. This calibration is 
an improved one because it contains measures of 
variability in the coefficients quantifying the associated 
uncertainty of the model. (b) it produces a probabilistic 
distribution that represents the mean prediction and 
the enveloping curves for a given Confidence Interval. 
(c) it is capable of dealing with homogeneous groups 
without partitioning the data by generating posteriors of 
predictors at different levels and models for every group; 
and (d) it is capable of dealing with missing data; that is, 
modeling missing predictors from a stochastic node and 
estimating missing responses by interpolation.

Application of Bayesian Modeling to Pavement 
Deterioration

A Bayesian regression model can be used to predict 
future values of any condition indicator at any level of 
the causal factors (predictors). A MCMC simulation 
is conducted to sample the space of the causal 
factors in order to obtain a good approximation of 

θ / x ~ N n0µ + nx
n0 + n

σ2
,

n0 + n( )

x

nx
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their probabilistic distribution. The use of confidence 
intervals is a natural approach for representing certainty 
about predictions. Building a Bayesian regression 
model involves: (a) identifying a functional model that 
captures the relationships between affecting factors 
and the response of interest (IRI, rut depth, deflections, 
distresses, etc.), (b) Setting up initial values in the form 
of prior distributions for the model coefficients, and (c) 
compiling some data (evidence) from observation or 
experimentation.

Step one requires the practitioner to borrow or develop 
a functional model that relates the response in terms of 
causal factors. The second step requires having initial 
values independent from the observed data (evidence). 
This can be approached in two ways: (a) an informative 
point of view where the opinions of experts are used to 
set up the initial values for the parameters or (b) results 
from external experiments or any other evidence is used 
for the initial estimates (i.e. a non-informative approach). 
The idea of using expert criteria for specifying the prior 
has been extensively debated (11, 12, 13 and 14). 
However, it is the only solution when no data is available 
from an independent source. Non-informative priors are 
preferred when there are sufficient observations.

Case Study – Rut depth progression Model

Revisiting Uzan (1983) Rut Depth Model

A prediction model of rut depth progression for a flexible 
(asphalt concrete) pavement section was developed by 
(10) from the AASHO Road Test. 	 Section 581 of the 
AASHO Road Test (15) was used by (10) to calibrate a 
rut depth progression model. Section 581 is on lane 1 
of Loop 4. Traffic loading for this section consisted of 6 
vehicles operating 18 hours 40 minutes period each day, 
6 days per week from November 5th 1958 to January 
1960. After January 1960 traffic was increased to 10 
vehicles, 7 days a week. Equivalent Single Axle Loads 
(ESALs) were computed based on the characteristics of 
the Road Test trucks provided in Table 7 of (15).

The model developed by (10) related the rate of rutting 
with traffic loading and pavement deflection under 
a moving standard dual wheel (single axle) for which 
pavement layer thickness and material properties 
were given. According to (10) the rate of rut depth 
per application relates to the traffic loading (N) by the 
following expression:

[3]

where, RRt = rate of rutting (in/year); p = contact 
pressure (psi); a = radius of contact of one side of a 
standard dual wheel axle (in); Es = subgrade modulus 
(psi); and k1 and k2 = functions of the material properties 
and pavement geometry.

Similar models by AASHO (15), (16) and (6) support 
the assumption that rut depth is highly related to traffic 
loading. Uzan (10) used a second order polynomial 
expansion to express the values of k1 and k2 in terms of 
the pavement plastic properties for a four layer pavement 
structure. Equations 4 and 6 present a simplified form 
of those relationships considering that a sensitivity 
analysis conducted by (17) found that rut depth is 
strongly dependent on both: pavement deflection and 
plastic properties of the asphalt layer (α and μ). Uzan 
(10) also found that plastic properties for the other 
granular layers (base and subbase) “vary over a small 
range…” and were “found to have little effect on the rut 
depth formation” (10). The transformed expressions 
contained on Equations 5 and 7 were needed for coding 
the software WinBUGS (13).

[4]

Which can be written,

[5]

[6]

Which can be written,

[7]

where, μ1 and α1 are the plastic parameters for the 
asphalt layer.

Uzan (10) noticed that the k1 coefficient is equal to zero 
when the pavement is elastic, i.e. α1 = 1 and μ1 = 0. 
Equation 3 can be re-expressed to include the deflection 
under a moving standard dual wheel. Equation 8 
presents such expression which alternatively can be 
transformed using logarithms as shown in Equation 9 
below. Equation 10 expresses the total rut depth as a 
result of integrating Equation 9:

[8]

RRt  = k1Nk2
pa

Es

log(1 + k1) = 0.00694 + 0.027017 x log( 1 +µ1) + 0.00235 x log(α1)

k1 = (1.01611 x ( 1 +µ1)
0.027017 x (α1)

0.00235) - 1

k2 = -1.01024 + 0.217log( 1 +µ1)
 - 1.26867 x log(α1)

k2 x ln(10) = ln(10-1.01024) + 0.217ln ( 1 +µ1) - 1.26867 x ln (α1)

RR = δ x xNk2
k1
W
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[9]

[10]

where, W = ;  k1 and k2 are as defined under Equations 5 
and 7; N = number of load applications (ESAL); and δ = 
deflection under a moving standard load (inch).

However, (10) assumes μ1 to be held constant at a level 
of 0.3, while, three curves were produced for values 
of α1 ranging from 0.5 to 0.6 in order to calibrate the 
rut depth equation to those conditions observed during 
the AASHO Road Test (15). Table 1 present the fixed 
parameters employed to produce each of the calibration 
curves presented on Figure 1. Uzan (10) concluded that 
α1 = 0.53 produced the best fit to the observed data. 

Bayesian Regression Modeling of the AASHO Road 
Test Data

The model developed by (10) was selected to validate 
this paper’s proposed approach. The WinBUGS free 

software suite developed by the Medical Research 
Council of the Cambridge University was used for this 
purpose. 

In the classical regression approach presented above, 
the values of the coefficients α1 = 0.53 and μ1 = 0.3 
were assumed after model calibration. The pavement 
deflections were fixed at a level of 0.2 inches (5mm) on 
the model and they did not provide any information on 
reliability (or dispersion of the predictions). The Bayesian 
model proposed here assumes those coefficients 
to be stochastic variables and estimates a posterior 
probabilistic distribution from a combination of expert 
criteria and the observed data. For the validation of the 
Bayesian model the pavement layers was held constant 
with D1 = 5 inches (127mm), D2 = 6 inches (152.4mm) 
and D3 = 12 inches (304.8mm).

On the second part of this paper explicit consideration of 
the road resistance to rut depth was given by considering 
the thickness of the granular layers. According to (10) rut 
depth has a strong dependence on the coefficient α1 and 
α1 on the temperature. As seen on the calibration curves 
for α1 on Figure 1, the larger the value of α1 the lower 
the level of rut depth deterioration. Hence larger values 
of α1 should be related to winter observations because 
low temperatures increase the bearing capacity of the 
soil and granular bases reducing rut depth damage. On 
the contrary, smaller values of alpha 1 should be related 
to spring observations as excess in moisture reduce 
the bearing capacity of the pavement structure. The 
coefficient α1 can be used for a multilevel modeling on 
further applications of the modeling as presented here.

Any Bayesian Regression modeling requires prior 
information for the stochastic nodes (variables). The 
use of non-informative priors is suggested elsewhere 
(8, 13). Using expert criteria as prior information has 
advantages and disadvantages. In situations where few 
observations are available, expert criteria has a strong 
influence in the model posteriors and therefore in the 
prediction. On the contrary, for models where large 
datasets are available, the effect of prior information 
vanishes because the model is able to learn from the 
observations and correct any bias contained in the 
priors. Prior distributions for the model in the present 
study contained expert criteria on nodes α1, μ1, the 
deflection δ and the overall model precision τ (see 
Figure 2 for specifics on codes and specified priors). 
The simulation was divided in two steps: The first part 
(known as the “burn-in”) consisted of 20 thousand 
iterations conducted until convergence. The second part 

Plastic Properties k1 k2 Equation for Total Ruta Depth

a1 = 0.5 and m1 = 0.3 0.021659 -0.60356 Log RD = -0.865 + log δ + 0.3964 log N

a1 = 0.55 and m1 = 0.3 0.021887 -0.65607 Log RD = -0.805 + log δ + 0.3493 log N

a1 = 0.6 and m1 = 0.3 0.022096 -0.70402 Log RD = -0.729 + log δ + 0.2960 log N

log (RR) = log(δ) + log + k2log(N)k1
W

( )

RD = δ x xN1+k2
k1

W (1+k2)

Accumulated Traffic Load (ESAL)
1,200.0001,000.000800.000600.000400.000200.0000

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Outer Wheel Path Rut depth
Inner Wheel Path Rut Depth
alpha 1 = 0.5
alpha 1 = 0.55
alpha 1 = 0.6

Table 1 Parameters to Estimate Total Rut Depth

Figure 1 Manual calibration of α1 (alpha 1) by fitting the observed rut depth of 

section 581 of the AASHO Road Test.



Noviembre 2012 • Nº 25 • Infraestructura Vial 33

thickness of the base). For this case Bayesian regression 
models estimated that the mean value of μ1 was 0.989 
varying for a 95% confidence interval between 0.912 
and 1.07, the deflection was eliminated from this models 
as this factor cancels out in the functional form (Equation 
11) and, the mean estimate of α1 reached 0.568 for 
pavements with weak base and 0.583 for strong based 
pavements with tight variation (as compared to Figure 
4) in both cases for the 95% confidence interval, ranging 
from 0.5607 to 0.5757 and from 0.5752 to 0.5912.

Figure 4 shows observed differences in the parameter 
alpha1 for both clusters. One can conclude that there are 

consisted of 20 thousand more iterations and its results 
produced the posterior distributions of the parameters 
and the predictive model for rut depth.

The classical functional form provided by Equation 10 
is used to represent the mean, E{*} accompanied by a 
variance term, VAR{*}. Both elements are embedded 
in a probabilistic distribution (normal in this case 
study). Equation 11 shows the specification of the 
regression model embedded in a normal distribution. 
The dependency of such expression on k1 and k2 is 
guaranteed using Equations 5 and 7.

		  [11]

where,		  = mean of total rut depth in inches;
  = deflection (inch); k1, k2 = simplified functions 
of material properties; α1 and μ1 are as defined in 
Equations 5 and 7; W =        is dimensionless deflection 
coefficient related to Es = the modulus of elasticity of the 
subgrade; p = contact pressure of the tire and; a = the 
radius of contact of one side of a standard dual wheel 
axle; and N = number of load applications (ESAL).  After 
validating the proposed approach, the entire dataset of 
rut depth observations was used to build a performance 
deterioration model. Pavements were clustered in two 
groups reflecting differences in the thickness of the base. 
A Bayesian regression model nested per base strength 
was used to calibrate the pavement parameters α1 and 
μ1 and to produce performance models for each one.

Results 

Uzan (10) calibrates the rut depth prediction model 
employing the classical fitting technique of least squares 
approach. He assumed μ1 to be fixed at 0.3 and the 
deflection δ to be fixed at 0.25 meanwhile, he manually 
produced curves for α1 to calibrate the model obtaining 
the best fit to the observations. In our approach a initial 
Bayesian regression modeling for section 581 estimated 
that the mean value of μ1 is 0.2856 varying for a 95% 
confidence interval between 0.1876 and 0.382, the 
deflection δ was held constant at 0.25, and the mean 
estimate of α1 laid very close to the traditional one 
(0.5305) with values for the 95% confidence interval 
ranging from 0.513 to 0.547. Therefore the Bayesian 
regression approach was validated. A Performance 
model for section 581 is shown in Figure 3, note the 
very broad range of variability (higher uncertainty) and 
expected performance similar to that observed in Figure 
1. The next logical step was to develop models of rut 
depth progression per pavement’s strength (based on 

WinBUGS software code used for the validation analysis.

Bayesian Performance model for section 581.

model {
      for (i in 1:56) {   # Number of observations section 581
RD [i] ~ dnorm(mu[i],tau)   # mu = rut depth after Uzan (1983)
mu[i] <- (a1[i]/W[i]*(1+a2[i])))*delta[z[i]]*pow(N[i]+a2[i]) #Specification of Mean
a1[i] <- (1.01611*pow(1+u1,0.027017)*pow(alpha1,0.00235))-1
a2[i] <- (-2.32616+0.217*log(1+u1)-1.26867*log(alpha1))/2.302585
      W[i] <- (-20*delta[z[i]]
      res[i] <-(RD[i]-mu[i]/sigma)  #standard residual
      p.res [i] <-phi(res[i])   #accumulated std residual
      Y.pred[i] ~ dnorm(mu[i],tau)
  }
for(r in 1:4)   {
delta[r] ~ dnorm(0.025,15000)  #Prior - Expert Criteria
       }
ul ~ dnorm(0.3,400)   #Prior - Expert Criteria
alpha1 ~ dnorm(0.5,100)   #Prior - Expert Criteria
tau ~ dgamma(0.0001,0.0001)
sigma <- 1/sqrt(tau)
     }
list(delta=c(0.035,0.035,0.035,0.015), alpha1 = 0.6, #Initial Values Chain 1
u1 = 0.25, tau = 0.0001)
list(delta = c(0.015,0.015,0.015,0.015), alpha1 = 042,
u1 = 0.35,tau = 0.0001)    #Initial Values Chain 2

1200.00
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0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

900.00600.00

Accumulated Traffic (Thousands of ESALs)

300.000.00

Rut Depht (in)

δ xRD = Normal N1+k2,τ
k1

W (1+k2)
( )

δ x xN1+k2
k1

W (1+k2)

δ

δ x Es

pa

Figure 2

Figure 3
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10

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 12 18 26 24 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 6 13 19 20 17 12 6 3 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 4 8 13 16 18 16 11 7 3 2 0 0 0

0 0 0 0 0 0 0 0 0 1 2 3 7 11 14 16 15 12 9 5 3 1

significant differences by observing how the estimated 
distribution of alpha1 for stronger pavements is shifted 
approximately two standard deviations towards the 
right of the same measure for weaker roads. The 

Table 2

Figure 4

Transition Probabilities Matrix for pavements with thicker base

Bayesian performance models per pavement’s base strength.  

corresponding performance model of each group of 
pavements is given on the right hand side of same figure. 
While strong pavements are expected to reach 0.5 
inches (12.7mm) and 0.65 inches (16.5mm) of rut depth 
at 600,000 and 1,120,000 ESALs respectively, weaker 
pavements would be reaching 0.6 inches (15.2mm) 
and almost 0.8 inches (20.32mm) at the same levels 
of accumulated traffic. Expected rut depth deterioration 
-originally observed for 2 years at the AASHO road 
test- will keep increasing with additional accumulated 
traffic across the lifespan of any road. Figure 4 explicitly 
captured the observed variability of both parameters and 
the overall performance. The mean prediction -shown as 
a solid gray line- is accompanied with an envelope for 
the 95% confidence interval (black lines).The results of 
Figure 4 can be re-expressed into a Transition Probability 
Matrix (TPM). Table 2 shows a TPM derived for the 
strong based pavements of Figure 4.
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Conclusions 

This paper has demonstrated how Bayesian Regression 
modeling provides a more reliable framework for 
prediction. The framework includes measures of 
variability on both the posterior distribution of the 
predictors and the overall prediction for any desired 
confidence interval. 

The paper has validated the Bayesian regression 
modeling by comparing the results with those from 
a classical regression model developed from the 
AASHO Road Test. The mean of the response of the 
model parameters from the Bayesian regression model 
reproduce those of the classical approach very closely.

The model presented in this paper is capable of estimating 
several stochastic parameters at once. Therefore, the 
method is very useful as a tool to calibrate models to 
local conditions from the observed data of the causal 
factors and response. Estimations are accompanied 
by a confidence interval which establishes the level 
of reliability of the model. Practical development of a 
transition probability matrix has also been demonstrated 
from final results of the Bayesian regression model.
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