Environmental impact of the broiler production chain under conventional systems

Authors

DOI:

https://doi.org/10.15517/am.2025.61097

Keywords:

life cycle analysis, ecological footprint, global warming, simulation models

Abstract

Introduction. Broiler production is an activity of increasing economic importance worldwide, but it entails a significant environmental impact. Objective. To assess the environmental impact of conventional broiler production chain systems. Materials and methods. The life cycle analysis (LCA) methodology was used following a “cradle to gate” approach. Base parameters were collected from a poultry farm located in San Ramón, Alajuela, Costa Rica, during the period January through December 2021. The LCA functional unit was defined as one metric ton of chicken meat (MT CM). Environmental impact categories were analyzed using the ReCiPe 2016 v.1.1 system, with characterization factors at the midpoint level under a hierarchical perspective. Results. The estimated environmental impacts, expressed in equivalent units per MT CM were as follows: global warming, 5208 kg CO2-eq; terrestrial acidification, 52.6 kg SO2-eq; marine eutrophication, 4.19 kg Neq; freshwater eutrophication, 2.47 kg P; land use, 5238 m2 crop year; water consumption, 3962 m3; terrestrial ecotoxicity, 1831 kg 1,4-DCB; marine ecotoxicity, 2.79 kg 1,4-DCB; freshwater ecotoxicity, 8.49 kg 1,4-DCB; human toxicity (carcinogenic), 1.13 kg 1,4-DCB; human toxicity (non-carcinogenic), 84.4 kg 1,4-DCB; fine particulate matter formation, 8.15 kg PM2.5; fossil resource depletion, 246.1 kg oil; ozone formation (ecosystem health), 10.8 kg NOx; ozone formation (human health), 10.7 kg NOx, and stratospheric ozone depletion, 0.043 kg CFC11. Conclusions. The processes contributing most significantly to the environmental impacts evaluated in this study were the production of feed, fertilizers, and fuels, along with farm waste management. The majority of the environmental impact attributable to the broiler production chain occurs outside of Costa Rica’s borders.

Downloads

Download data is not yet available.

References

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 9(3), Article 42. https://doi.org/10.3390/toxics9030042

Bengtsson, J., & Seddon, J. (2013). Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. Journal of Cleaner Production, 41, 291–300. https://doi.org/10.1016/j.jclepro.2012.09.034

Cámara de Industriales de Alimentos Balanceados. (2018). Situación actual de alimentos balanceados. Informe anual, 2018, Costa Rica. https://www.ciabcr.com/charlas/Nutrici%c3%b3n%20Animal%202018/Charlas/Carl_Oroz.pdf

Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environmental Pollution, 158(1), 1–17. https://doi.org/10.1016/j.envpol.2009.07.011

Costantini, M., Ferrante, V., Guarino, M., & Bacenetti, J. (2021). Environmental sustainability assessment of poultry productions through life cycle approaches: A critical review. Trends in Food Science & Technology, 110, 201–212. https://doi.org/10.1016/j.tifs.2021.01.086

Davis, S. J., Burney, J. A., Pongratz, J., & Caldeira, K. (2014). Methods for attributing land-use emissions to products. Carbon Management, 5(2), 233–245. https://doi.org/10.1080/17583004.2014.913867

De Vries, M., & De Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1-3), 1–11. https://doi.org/10.1016/j.livsci.2009.11.007

Domínguez Aldama, D., Grassauer, F., Zhu, Y., Ardestani-Jaafari, A., & Pelletier, N. (2023). Allocation methods in life cycle assessments (LCAs) of agri-food co-products and food waste valorization systems: Systematic review and recommendations. Journal of Cleaner Production, 421, Article 138488. https://doi.org/10.1016/j.jclepro.2023.138488

European Commission Joint Research Centre. (2017). Global normalisation factors for the environmental footprint and life cycle assessment. https://data.europa.eu/doi/10.2760/88930

Ferrari Noll, L. A. (2018). Lixiviación de fosfatos y nitratos a partir de fertilizantes inorgánicos y orgánicos bajo lluvia simulada [Tesis de licenciatura, Escuela Agrícola Panamericana]. Repositorio Biblioteca Digital Wilson Popenoe. https://bdigital.zamorano.edu/handle/11036/6370

Food and Agriculture Organization of the United Nations. (2023). FAOSTAT: Food and agriculture data. [FAOSTAT]. https://www.fao.org/faostat/en/

Gerber, P., Opio, C., & Steinfeld, H. (2007, November 5-7). Poultry production and the environment – a review [Paper presentation]. Poultry in the 21st Century: Avian influenza and beyond, Rome, Italy. https://www.fao.org/4/i0323e/i0323e00.htm

González-García, S., Gomez-Fernández, Z., Dias, A. C., Feijoo, G., Moreira, M. T., & Arroja, L. (2014). Life Cycle Assessment of broiler chicken production: A Portuguese case study. Journal of Cleaner Production, 74, 125–134. https://doi.org/10.1016/j.jclepro.2014.03.067

GreenDelta. (2007). OpenLCA (Version 2.1.1) [Computer software]. GreenDelta. https://www.openlca.org/openlca/

Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R. L., Ławniczek-Wałczyk, A., Piechowicz, L., Olkowska, E., Potrykus, M., Tankiewicz, M., Krupka, M., Siebielec, G., & Wolska, L. (2023). Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858, Article 160014. https://doi.org/10.1016/j.scitotenv.2022.160014

Guinée, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., & Rydberg, T. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45(1), 90–96. https://doi.org/10.1021/es101316v

Hörtenhuber, S. J., Theurl, M. C., Piringer, G., & Zollitsch, W. J. (2018). Consequences from land use and indirect/direct land use change for CO2 emissions related to agricultural commodities. In L. Loures (Ed.), Land use: Assessing the past, envisioning the future. (pp. 73–90). IntechOpen. https://doi.org/10.5772/intechopen.80346

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-y

Instituto Meteorológico Nacional. (2015). Factores de emisión. Gases de efecto invernadero (5ª ed.). http://cglobal.imn.ac.cr/documentos/publicaciones/factoresemision/factoresemision2015/offline/download.pdf.

Intergovernmental Panel on Climate Change. (2006). Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/index.html

International Organization for Standardization. (2006). Environmental management — Life cycle assessment — Principles and framework (ISO Standard n.º 14040:2006). https://www.iso.org/obp/ui/en/#iso:std:iso:14040:ed-2:v1:en

Kalhor, T., Rajabipour, A., Akram, A., & Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3(4), 262–271. https://doi.org/10.1016/j.inpa.2016.10.002

Kiss, N. E., Tamás, J., Elbeltagi, A., & Nagy, A. (2022). Life cycle assessment of the environmental impact of broiler chicken production. Natural Resources and Sustainable Development Journal, 12(1), 163–172. https://doi.org/10.31924/nrsd.v12i1.097

Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242

Livestock Environmental Assessment and Performance Partnership. (2014). Greenhouse gas emissions and fossil energy demand from poultry supply chains: Guidelines for quantification. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/items/9205d224-9bf0-4f52-a627-a06c252044c4

MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from pig and chicken supply chains - A global life cycle assessment. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i3460e/i3460e00.htm

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011

Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415. https://doi.org/10.1007/s10021-011-9517-8

Münch, S., Papke, N., Thiel, N., Nübel, U., Siller, P., Roesler, U., Biniasch, O., Funk, R., & Amon, T. (2020). Effects of farmyard manure application on dust emissions from arable soils. Atmospheric Pollution Research, 11(9), 1610–1624. https://doi.org/10.1016/j.apr.2020.06.007

National Renewable Energy Laboratory. (2012). U. S. Life Cycle Inventory Database: Comprehensive environmental data on the lifecycle impacts of energy technologies. https://www.nrel.gov/lci

Ogino, A., Oishi, K., Setoguchi, A., & Osada, T. (2021). Life cycle assessment of sustainable broiler production systems: Effects of low-protein diet and litter incineration. Agriculture, 11(10), Article 921. https://doi.org/10.3390/agriculture11100921

Olivera, A., Cristobal, S., & Saizar, C. (2016). Análisis de ciclo de vida ambiental, económico y social: Una herramienta para la evaluación de impactos y soporte para la toma de decisiones. Innotec Gestión, 7, 20–27.

Portillo Chávez, F. (2022). Estimación del impacto ambiental de un sistema convencional de producción de pollo de engorde en Costa Rica [Tesis de maestría, Universidad Nacional]. Repositorio Académico Institucional de la Universidad Nacional. https://repositorio.una.ac.cr/handle/11056/28696

Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R., & Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133, 222–231. https://doi.org/10.1016/j.jenvman.2013.12.011

Putman, B., Thoma, G., Burek, J., & Matlock, M. (2017). A retrospective analysis of the United States poultry industry: 1965 compared with 2010. Agricultural Systems, 157, 107–117. https://doi.org/10.1016/j.agsy.2017.07.008

Rodić, V., Perić, L., Đukić-Stojčić, M., & Vukelić, N. (2011). The environmental impact of poultry production. Biotechnology in Animal Husbandry, 27(4), 1673–1679. https://doi.org/10.2298/BAH1104673R

Russ, A., & Schaeffer, E. (2018). Ammonia emissions from broiler operations higher than previously thought [Research report]. The Environmental Integrity Project. https://environmentalintegrity.org/wp-content/uploads/2017/02/Ammonia-Report.pdf

Secretaría Ejecutiva de Planificación Sectorial Agropecuaria. (2022). Boletín Estadístico Agropecuario n.º 32. Serie cronológica 2018-2021. https://www.mag.go.cr/bibliotecavirtual/BEA-0032.PDF

Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, Article 64. https://doi.org/10.3389/fenvs.2017.00064

Thoma, G., & Putman, B. (2020). Broiler production system life cycle assessment: 2020 update [Research report]. Resilience Services. https://www.nationalchickencouncil.org/wp-content/uploads/2021/09/Broiler-Production-System-LCA_2020-Update.pdf

Urrutia, J., & Valenzuela, R. (s. f.). Huella de carbono: herramienta para el mejoramiento de la competitividad climática en las exportaciones chilenas. Dirección General de Relaciones Económicas Internacionales. https://www.chilecarne.cl/web2021/wp-content/uploads/ESTUDIO-PROCHILE-DE-HUELLA-DE-CARBONO.pdf

Yuan, Q., Saunders, S. E., & Bartelt-Hunt, S. L. (2012). Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses. Waste Management, 32(5), 939–943. https://doi.org/10.1016/j.wasman.2011.11.015

Published

2025-03-28

How to Cite

Portillo-Chávez, F., & Vargas-Leitón, B. (2025). Environmental impact of the broiler production chain under conventional systems. Agronomía Mesoamericana, 36, 61097. https://doi.org/10.15517/am.2025.61097

Most read articles by the same author(s)