Environmental impact of the broiler production chain under conventional systems
DOI:
https://doi.org/10.15517/am.2025.61097Keywords:
life cycle analysis, ecological footprint, global warming, simulation modelsAbstract
Introduction. Broiler production is an activity of increasing economic importance worldwide, but it entails a significant environmental impact. Objective. To assess the environmental impact of conventional broiler production chain systems. Materials and methods. The life cycle analysis (LCA) methodology was used following a “cradle to gate” approach. Base parameters were collected from a poultry farm located in San Ramón, Alajuela, Costa Rica, during the period January through December 2021. The LCA functional unit was defined as one metric ton of chicken meat (MT CM). Environmental impact categories were analyzed using the ReCiPe 2016 v.1.1 system, with characterization factors at the midpoint level under a hierarchical perspective. Results. The estimated environmental impacts, expressed in equivalent units per MT CM were as follows: global warming, 5208 kg CO2-eq; terrestrial acidification, 52.6 kg SO2-eq; marine eutrophication, 4.19 kg Neq; freshwater eutrophication, 2.47 kg P; land use, 5238 m2 crop year; water consumption, 3962 m3; terrestrial ecotoxicity, 1831 kg 1,4-DCB; marine ecotoxicity, 2.79 kg 1,4-DCB; freshwater ecotoxicity, 8.49 kg 1,4-DCB; human toxicity (carcinogenic), 1.13 kg 1,4-DCB; human toxicity (non-carcinogenic), 84.4 kg 1,4-DCB; fine particulate matter formation, 8.15 kg PM2.5; fossil resource depletion, 246.1 kg oil; ozone formation (ecosystem health), 10.8 kg NOx; ozone formation (human health), 10.7 kg NOx, and stratospheric ozone depletion, 0.043 kg CFC11. Conclusions. The processes contributing most significantly to the environmental impacts evaluated in this study were the production of feed, fertilizers, and fuels, along with farm waste management. The majority of the environmental impact attributable to the broiler production chain occurs outside of Costa Rica’s borders.
Downloads
References
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 9(3), Article 42. https://doi.org/10.3390/toxics9030042
Bengtsson, J., & Seddon, J. (2013). Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. Journal of Cleaner Production, 41, 291–300. https://doi.org/10.1016/j.jclepro.2012.09.034
Cámara de Industriales de Alimentos Balanceados. (2018). Situación actual de alimentos balanceados. Informe anual, 2018, Costa Rica. https://www.ciabcr.com/charlas/Nutrici%c3%b3n%20Animal%202018/Charlas/Carl_Oroz.pdf
Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environmental Pollution, 158(1), 1–17. https://doi.org/10.1016/j.envpol.2009.07.011
Costantini, M., Ferrante, V., Guarino, M., & Bacenetti, J. (2021). Environmental sustainability assessment of poultry productions through life cycle approaches: A critical review. Trends in Food Science & Technology, 110, 201–212. https://doi.org/10.1016/j.tifs.2021.01.086
Davis, S. J., Burney, J. A., Pongratz, J., & Caldeira, K. (2014). Methods for attributing land-use emissions to products. Carbon Management, 5(2), 233–245. https://doi.org/10.1080/17583004.2014.913867
De Vries, M., & De Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1-3), 1–11. https://doi.org/10.1016/j.livsci.2009.11.007
Domínguez Aldama, D., Grassauer, F., Zhu, Y., Ardestani-Jaafari, A., & Pelletier, N. (2023). Allocation methods in life cycle assessments (LCAs) of agri-food co-products and food waste valorization systems: Systematic review and recommendations. Journal of Cleaner Production, 421, Article 138488. https://doi.org/10.1016/j.jclepro.2023.138488
European Commission Joint Research Centre. (2017). Global normalisation factors for the environmental footprint and life cycle assessment. https://data.europa.eu/doi/10.2760/88930
Ferrari Noll, L. A. (2018). Lixiviación de fosfatos y nitratos a partir de fertilizantes inorgánicos y orgánicos bajo lluvia simulada [Tesis de licenciatura, Escuela Agrícola Panamericana]. Repositorio Biblioteca Digital Wilson Popenoe. https://bdigital.zamorano.edu/handle/11036/6370
Food and Agriculture Organization of the United Nations. (2023). FAOSTAT: Food and agriculture data. [FAOSTAT]. https://www.fao.org/faostat/en/
Gerber, P., Opio, C., & Steinfeld, H. (2007, November 5-7). Poultry production and the environment – a review [Paper presentation]. Poultry in the 21st Century: Avian influenza and beyond, Rome, Italy. https://www.fao.org/4/i0323e/i0323e00.htm
González-García, S., Gomez-Fernández, Z., Dias, A. C., Feijoo, G., Moreira, M. T., & Arroja, L. (2014). Life Cycle Assessment of broiler chicken production: A Portuguese case study. Journal of Cleaner Production, 74, 125–134. https://doi.org/10.1016/j.jclepro.2014.03.067
GreenDelta. (2007). OpenLCA (Version 2.1.1) [Computer software]. GreenDelta. https://www.openlca.org/openlca/
Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R. L., Ławniczek-Wałczyk, A., Piechowicz, L., Olkowska, E., Potrykus, M., Tankiewicz, M., Krupka, M., Siebielec, G., & Wolska, L. (2023). Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858, Article 160014. https://doi.org/10.1016/j.scitotenv.2022.160014
Guinée, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., & Rydberg, T. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45(1), 90–96. https://doi.org/10.1021/es101316v
Hörtenhuber, S. J., Theurl, M. C., Piringer, G., & Zollitsch, W. J. (2018). Consequences from land use and indirect/direct land use change for CO2 emissions related to agricultural commodities. In L. Loures (Ed.), Land use: Assessing the past, envisioning the future. (pp. 73–90). IntechOpen. https://doi.org/10.5772/intechopen.80346
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-y
Instituto Meteorológico Nacional. (2015). Factores de emisión. Gases de efecto invernadero (5ª ed.). http://cglobal.imn.ac.cr/documentos/publicaciones/factoresemision/factoresemision2015/offline/download.pdf.
Intergovernmental Panel on Climate Change. (2006). Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/index.html
International Organization for Standardization. (2006). Environmental management — Life cycle assessment — Principles and framework (ISO Standard n.º 14040:2006). https://www.iso.org/obp/ui/en/#iso:std:iso:14040:ed-2:v1:en
Kalhor, T., Rajabipour, A., Akram, A., & Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3(4), 262–271. https://doi.org/10.1016/j.inpa.2016.10.002
Kiss, N. E., Tamás, J., Elbeltagi, A., & Nagy, A. (2022). Life cycle assessment of the environmental impact of broiler chicken production. Natural Resources and Sustainable Development Journal, 12(1), 163–172. https://doi.org/10.31924/nrsd.v12i1.097
Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242
Livestock Environmental Assessment and Performance Partnership. (2014). Greenhouse gas emissions and fossil energy demand from poultry supply chains: Guidelines for quantification. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/items/9205d224-9bf0-4f52-a627-a06c252044c4
MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from pig and chicken supply chains - A global life cycle assessment. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i3460e/i3460e00.htm
Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011
Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415. https://doi.org/10.1007/s10021-011-9517-8
Münch, S., Papke, N., Thiel, N., Nübel, U., Siller, P., Roesler, U., Biniasch, O., Funk, R., & Amon, T. (2020). Effects of farmyard manure application on dust emissions from arable soils. Atmospheric Pollution Research, 11(9), 1610–1624. https://doi.org/10.1016/j.apr.2020.06.007
National Renewable Energy Laboratory. (2012). U. S. Life Cycle Inventory Database: Comprehensive environmental data on the lifecycle impacts of energy technologies. https://www.nrel.gov/lci
Ogino, A., Oishi, K., Setoguchi, A., & Osada, T. (2021). Life cycle assessment of sustainable broiler production systems: Effects of low-protein diet and litter incineration. Agriculture, 11(10), Article 921. https://doi.org/10.3390/agriculture11100921
Olivera, A., Cristobal, S., & Saizar, C. (2016). Análisis de ciclo de vida ambiental, económico y social: Una herramienta para la evaluación de impactos y soporte para la toma de decisiones. Innotec Gestión, 7, 20–27.
Portillo Chávez, F. (2022). Estimación del impacto ambiental de un sistema convencional de producción de pollo de engorde en Costa Rica [Tesis de maestría, Universidad Nacional]. Repositorio Académico Institucional de la Universidad Nacional. https://repositorio.una.ac.cr/handle/11056/28696
Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R., & Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133, 222–231. https://doi.org/10.1016/j.jenvman.2013.12.011
Putman, B., Thoma, G., Burek, J., & Matlock, M. (2017). A retrospective analysis of the United States poultry industry: 1965 compared with 2010. Agricultural Systems, 157, 107–117. https://doi.org/10.1016/j.agsy.2017.07.008
Rodić, V., Perić, L., Đukić-Stojčić, M., & Vukelić, N. (2011). The environmental impact of poultry production. Biotechnology in Animal Husbandry, 27(4), 1673–1679. https://doi.org/10.2298/BAH1104673R
Russ, A., & Schaeffer, E. (2018). Ammonia emissions from broiler operations higher than previously thought [Research report]. The Environmental Integrity Project. https://environmentalintegrity.org/wp-content/uploads/2017/02/Ammonia-Report.pdf
Secretaría Ejecutiva de Planificación Sectorial Agropecuaria. (2022). Boletín Estadístico Agropecuario n.º 32. Serie cronológica 2018-2021. https://www.mag.go.cr/bibliotecavirtual/BEA-0032.PDF
Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, Article 64. https://doi.org/10.3389/fenvs.2017.00064
Thoma, G., & Putman, B. (2020). Broiler production system life cycle assessment: 2020 update [Research report]. Resilience Services. https://www.nationalchickencouncil.org/wp-content/uploads/2021/09/Broiler-Production-System-LCA_2020-Update.pdf
Urrutia, J., & Valenzuela, R. (s. f.). Huella de carbono: herramienta para el mejoramiento de la competitividad climática en las exportaciones chilenas. Dirección General de Relaciones Económicas Internacionales. https://www.chilecarne.cl/web2021/wp-content/uploads/ESTUDIO-PROCHILE-DE-HUELLA-DE-CARBONO.pdf
Yuan, Q., Saunders, S. E., & Bartelt-Hunt, S. L. (2012). Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses. Waste Management, 32(5), 939–943. https://doi.org/10.1016/j.wasman.2011.11.015

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Felipe Portillo-Chávez, Bernardo Vargas-Leitón

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).