Disinfection of zygotic embryos of Ceroxylon alpinum Bonpl. in vitro establishment

Authors

DOI:

https://doi.org/10.15517/am.2025.61825

Keywords:

explants, sterilization, sodium hypochlorite, safety, wax palm

Abstract

Introduction. The Ceroxylon genus includes Andean palm species that are vulnerable due to human intervention. Specifically, the seeds of Ceroxylon alpinum Bonpl. exhibit low germination rates, slow growth, and require complex environmental interactions for development. Objective. To evaluate disinfection methods for zygotic palm embryos to enable in vitro culture and micropropagation. Materials and methods. The study was conducted between February 2021 and March 2022. Wax palm (Ceroxylon alpinum Bonpl.) seeds were collected in the El Cairo forest, Salento, Quindío, Colombia, during the fruiting stage, selecting those with good morphological development and phytosanitary conditions. The seeds were then transported to the Plant Biotechnology Laboratory-CIBUQ in Armenia, Quindío. Surface disinfection was performed using neutral detergent Tween 20 at a concentration of 0.1 % (v/v) and running water, followed by immersion in 3 % NaClO for 25 minutes. The embryos were extracted under a stereoscope and immersed in 70% alcohol for one minute. They were then subjected to different NaClO concentrations for 10 minutes before being cultured in MS medium and evaluated for eight weeks. A completely randomized design with a single factor (NaClO concentration) and three levels (1 %, 1.5 %, and 2 %) was used, analyzed through ANOVA and Tukey’s test (α = 0.05) using Statistica 8 software. Results. Disinfection with 1.5 % NaClO (T2) was the most effective, achieving 75 % survival and 74 % embryo sprouting. In contrast, the 2 % NaClO concentration increased contamination. Conclusion. The disinfection method using 1.5 % NaClO was the most effective for enabling the viability of wax palm zygotic embryos, maximizing in vitro survival and sprouting, thereby facilitating micropropagation and the conservation of endangered species.

Downloads

Download data is not yet available.

References

Anwar, M., Chen, L., Xiao, Y., Wu, J., Zeng, L., & Hu, Z. (2021). Recent advanced metabolic and genetic engineering of phenylpropanoid biosynthetic pathways. International Journal of Molecular Sciences, 22(17), Article 9544. https://doi.org/10.3390/ijms22179544

Bacon, C., Roncal, J., Andermann, T., Barnes, C., Balslev, H., Gutiérrez-Pinto, N., Morales, H., Núñez-Avellaneda, L., Tunarosa, N., & Antonelli, A. (2021). Genomic and niche divergence in an Amazonian palm species complex. Botanical Journal of the Linnean Society, 197(3), 498–512. https://doi.org/10.1093/botlinnean/boab012

Benchimol, M., Talora, D., Mariano-Neto, E., Oliveira, T., Leal, A., Mielke, M., & Faria, D. (2016). Losing our palms: The influence of landscape-scale deforestation on Arecaceae diversity in the Atlantic Forest. Forest Ecology and Management, 384, 314–322. https://doi.org/10.1016/j.foreco.2016.11.014

Brodsky, A., Abakumov, E., & Kirillova, I. (2023). Problems in threatened species conservation: Differences in national red lists assessments with global standards. Diversity, 15(3), Article 337. https://doi.org/10.3390/d15030337

Chacón-Vargas, K., García-Merchán, V. H., & Sanín, M. J. (2020). De las especies de piedra angular a la conservación: Genética de conservación de la palma de cerdo Ceroxylon quindiuense en las mayores poblaciones silvestres de Colombia y colecciones de plantas ex situ vecinas seleccionadas. Biodiversity and Conservation, 29, 283–302. https://doi.org/10.1007/s10531-019-01882-w

Corporación Autónoma Regional de Cundinamarca. (2018). Plan de manejo y conservación de la palma real (Ceroxylon alpinum Bonpl. Ex DC.) en la jurisdicción de la CAR Cundinamarca. https://www.car.gov.co/uploads/files/60d37ec3b6da0.pdf

Corozo, L., Héctor, E., Macías, F., Vásquez, B., Pinargote, B., Cobeña, G., Mendoza, A., & Arteaga, F. (2020). Micropropagación de dos variedades ecuatorianas de yuca (Manihot esculenta Crantz). Chilean Journal of Agricultural & Animal Sciences, 36(3), 224–232. https://revistas.udec.cl/index.php/chjaas/article/view/2985/3069

Couvreur, T. L. P., Jijon, N., Morales-Morales, P. A., Sanín, M. J., Copete, J. C., Lozinguez, A., & Beech, E. (2024). Diversity and conservation status of palms (Arecaceae) in two hotspots of biodiversity in Colombia and Ecuador. Plants, People, Planet, 6(4), 885–901. https://doi.org/10.1002/ppp3.10506

Custódio, L., Charles, G., Magné, C., Barba-Espín, G., Piqueras, A., Hernández, J. A., Ben Hamed, K., Castañeda-Loaiza, V., Fernandes, E., & Rodrigues, M. J. (2023). Application of In Vitro Plant Tissue Culture Techniques to Halophyte Species: A Review. Plants, 12(1), Article 126. https://doi.org/10.3390/plants12010126

Fernández-Hilario, R., Pillaca Huacre, L., Villanueva, R., Riva Regalado, S., Rojas, R., Goldenberg, R., & Michelangeli, F. (2024). Taxonomic and chorological novelties in Blakea (Melastomataceae: Pyxidantheae) from Peru with a list of species for the country. Phytotaxa, 635(1), 1-42. https://doi.org/10.11646/phytotaxa.635.1.1

Galeano, G., Bernal, R., & Sanín, M. J. (2015). Plan de conservación, manejo y uso sostenible de la palma de cera del Quindío (Ceroxylon quindiuense), Árbol Nacional de Colombia. Ministerio de Ambiente y Desarrollo Sostenible, & Universidad Nacional de Colombia. https://archivo.minambiente.gov.co/images/BosquesBiodiversidadyServiciosEcosistemicos/pdf/Programas-para-la-gestion-de-fauna-y-flora/Plan_de_conservaci%C3%B3n_manejo_y_uso_sostenible_de_la_palma_de_cera_del_Quind%C3%ADo.pdf

Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: Multilayer perceptron–multi-objective genetic algorithm. BMC Plant Biology, 22(1), Article 324. https://doi.org/10.1186/s12870-022-03674-x

González-Rivillas, N., Bohórquez, A., Gutiérrez, J. P., & García-Merchán, V. H. (2018). Diversity and population genetic structure of the wax palm Ceroxylon quindiuense in the Colombian Coffee region. bioRxiv, 2018, Article 443960. https://doi.org/10.1101/443960

Henderson, A. (2024). Pollination systems of palms (Arecaceae). Journal of Pollination Ecology, 36, 144–248. https://doi.org/10.26786/1920-7603(2024)782

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (2017). Estado actual de conservación de la población de Ceroxylon quindiuense (H.Karst.) H. Wendl. (Arecaceae) en la microcuenca del río Tochecito, Tolima. http://i2d.humboldt.org.co/ceiba/resource.do?r=rrbb_palma_tochecito_2017

Jatoi, Mushtaque & Abul Soad, Adel & Markhand, Ghulam & Solangi, Najamuddin. (2015). Establishment of an efficient protocol for micropropagation of some Pakistani cultivars of date palm (Phoenix dactylifera L.) using novel inflorescence explants. Pakistan Journal of Botany, 47, 1921-1927. https://www.pakbs.org/pjbot/PDFs/47(5)/40.pdf

Kalyana Babu, B., Mathur, R. K., Suresh, K., Ravichandran, G., Susanthi, B., Patil, G. B., Ruthweek, N., & Mahesh, M. (2024). Efficient regeneration protocol for producing true-to-type oil palm (Elaeis guineensis (jacq.) through somatic embryogenesis from immature male inflorescence. Heliyon, 11(1), Article e41479. https://doi.org/10.1016/j.heliyon.2024.e41479

Kulus, D., & Tymoszuk, A. (2024). Advancements in in vitro technology: A comprehensive exploration of micropropagated plants. Horticulturae, 10(1), Article 88. https://doi.org/10.3390/horticulturae10010088

Leelavathy, S., & Sankar, P. D. (2016). Curbing the menace of contamination in plant tissue culture. Journal of Pure and Applied Microbiology, 10(3), 2145–2152. https://microbiologyjournal.org/curbing-the-menace-of-contamination-in-plant-tissue-culture/

Mahasin, K., Hazra, M., Mahato, S., Spicer, R. A., Roy, K., Hazra, T., Bandopadhaya, M., Spicer, T. E. V., & Bera, S. (2020). A Cretaceous Gondwana origin of the wax palm subfamily (Ceroxyloideae: Arecaceae) and its paleobiogeographic context. Review of Palaeobotany and Palynology, 283, Article 104318. https://doi.org/10.1016/j.revpalbo.2020.104318

Martínez-Montero, M. E., Arnao, M. T., & Engelmann, F. (2012). Cryopreservation of tropical plant germplasm with vegetative propagation - Review of sugarcane (Saccharum spp.) and pineapple (Ananas comusus (L.) Merrill) cases. In I. I. Katkov (Ed.), Current frontiers in cryopreservation (Chapter 18, pp. 359-396). Intechopen. https://doi.org/10.5772/32047

Mazri, M. A., & Meziani, R. (2013). An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). Journal of Plant Biochemistry and Biotechnology, 22, 176-184. https://doi.org/10.1007/s13562-012-0147-9

Orlikowska, T., Nowak, K., & Reed, B. (2017). Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture, 128, 487–508. https://doi.org/10.1007/s11240-016-1144-9

Pais, A. K., da Silva, A. P., Cardoso de Souza, J., Lopes Teixeira, S., Martins Ribeiro, J., Peixoto, A. R., & Domingos da Paz, C. (2016). Sodium hypochlorite sterilization of culture medium in micropropagation of Gerbera hybrida cv. Essandre. African Journal of Biotechnology, 15(36), 1995-1998. https://doi.org/10.5897/AJB2016.15405

Permadi, N., Nurzaman, M., Alhasnawi, A. N., Doni, F., & Julaeha, E. (2023). Managing Lethal Browning and Microbial Contamination in Musa spp. Tissue Culture: Synthesis and Perspectives. Horticulturae, 9(4), Article 453. https://doi.org/10.3390/horticulturae9040453

Rojas-Sandino, L. D., Cruz-Cuellar, H., & Losada-Prado, S. (2023). Análisis espacial y conectividad estructural en paisajes con palma de cera (Ceroxylon quindiuense) y su relación con aves, mariposas y mamíferos en el departamento del Tolima, Colombia. Caldasia, 45(3), 518–531. https://doi.org/10.15446/caldasia.v45n3.102536

Sanín, M. J., & Galeano, G. (2016). A revision of the Andean wax palms, Ceroxylon (Arecaceae). Phytotaxa, 34(1), 1–64. https://doi.org/10.11646/phytotaxa.34.1.1

Şekerli, M. (2024). Season, thermotherapy and surface sterilization play important roles in microbial contamination of hazelnut in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 157, Article 70. https://doi.org/10.1007/s11240-024-02799-1

Sivanesan, I., Muthu, M., Gopal, J., Tasneem, S., Kim, D. H., & Oh, J. W. (2021). A fumigation-based surface sterilization approach for plant tissue culture. International Journal of Environmental Research and Public Health, 18(5), Article 2282. https://doi.org/10.3390/ijerph18052282

Teixeira da Silva, J. A., Winarto, B., Dobránszki, J., Cardoso, J. C., & Zeng, S. (2016) Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Horticulturae, 28(1), 57-75. https://doi.org/10.1515/fhort-2016-0008

Published

2025-06-04

How to Cite

Serna-Toro, E., Villa-Ramírez, R., & Arbeláez-Arias, L. A. (2025). Disinfection of zygotic embryos of Ceroxylon alpinum Bonpl. in vitro establishment. Agronomía Mesoamericana, 61825. https://doi.org/10.15517/am.2025.61825

Issue

Section

Articles