Marine macroalgae as habitat: effect of their morphology on the composition of polychaetes (Annelida: Polychaeta) and sipunculans (Annelida: Sipuncula)
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

algal fronds; Cayo Serrana Island; ecology; morphological complexity; taxonomy frondas algales; Isla Cayo Serrana; ecología; complejidad morfológica; taxonomía

How to Cite

Ramírez Henao, A. P., Quan Young, L. I., & Carrera Parra, L. F. . (2025). Marine macroalgae as habitat: effect of their morphology on the composition of polychaetes (Annelida: Polychaeta) and sipunculans (Annelida: Sipuncula). Revista De Biología Tropical, 73(1), e62122. https://doi.org/10.15517/rev.biol.trop.v73i1.62122

Abstract

Introduction: Marine macroalgae exhibit a wide variety of shapes and sizes, influencing habitat preferences for various organisms, including polychaetes and sipunculans. Objective: To evaluate the relationship between the richness and abundance of polychaetes and sipunculans with red, green, and brown marine macroalgae using specimens collected in Isla Cayo Serrana, Colombian Caribbean, deposited at the Colecciones Biológicas de la Universidad CES (CBUCES). Methods: To estimate the richness and abundance of polychaetes and sipunculans associated with macroalgae, the specimens were separated from each batch of macroalgae. Also, a χ2 test was performed to evaluate if there was an association between annelids and macroalgae. In addition, some morphological measurements were taken for green and red algae, and the relationship between algae morphological complexity and richness and abundance of polychaetes was assessed using Spearman’s correlation coefficient. Results: A total of 460 polychaetes and eight sipunculans were recorded in this study, distributed in 42 species. The polychaete family with the highest richness and abundance was Syllidae, whereas in sipunculans was Phascolosomatidae. Herein, we did not find an association between red, green, and brown macroalgae regarding the richness and abundance of polychaetes and sipunculans. However, a correlation (ρ 0.56–0.78, p < 0.03) was found between some morphological measurements of width, leaf area, wet weight, and displaced volume of green macroalgae of the genus Halimeda with the polychaetes richness and abundance. In contrast, there was no correlation between measurements of red macroalgae (Jania and Amphiroa) and polychaete richness and abundance (ρ between -0.1 and 0.39). Conclusions: This study underscores the relevance of specific morphological attributes of green macroalgae (Halimeda) in enhancing polychaete richness and abundance.

https://doi.org/10.15517/rev.biol.trop..v73i1.62122
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Antoniadou, C., & Chintiroglou, C. (2006). Trophic relationships of polychaetes associated with different algal growth forms. Helgoland Marine Research, 60, 39–49.

Baron-Vargas, J. A., & Pauwels Romero, S. (2015). Análisis geomorfológico de la Islas Cayos de Serrana y Serranilla. Observatorio Coralina [Tesis de grado, Escuela Naval De Cadetes “Almirante Padilla"]. Observatorio Coralina. https://observatorio.coralina.gov.co/index.php/es/publicaciones/item/457-ana-lisis-geomorfolo-gico-de-la-islas-cayos-de-serrana-y-serranilla

Bégin, C., Johnson, L., & Himmelman, J. (2004). Macroalgal canopies: Distribution and diversity of associated invertebrates and effects on the recruitment and growth of mussels. Marine Ecology Progress Series, 271, 121–132.

Cacabelos, E., Olabarria, C., Incera, M., & Troncoso, J. S. (2010). Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuarine, Coastal and Shelf Science, 89(1), 43–52.

Casoli, E., Bonifazi, A., Ardizzone, G., & Gravina, M. F. (2016). How algae influence sessile marine organisms: The tube worms case of study. Estuarine, Coastal and Shelf Science, 178, 12–20.

Chava, A., Artemieva, A., & Yakovis, E. (2019). Plant part age and size affect sessile macrobenthic assemblages associated with a foliose red algae Phycodrys rubens in the white sea. Diversity, 11(5), 80.

Chemello, R., & Milazzo, M. (2002). Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology, 140, 981–990.

Christie, H., Jørgensen, N., & Norderhaug, K. (2007). Bushy or smooth, high or low; importance of habitat architecture and vertical position for distribution of fauna on kelp. Journal of Sea Research, 58, 198–208. https://doi.org/10.1016/j.seares.2007.03.006

Chryssanthi, A., Nicolaidou, A., & Chintiroglou, C. (2004). Polychaetes associated with the sciaphilic alga community in the northern Aegean Sea: Spatial and temporal variability. Helgoland Marine Research, 58, 168–182.

Cutler, E. B. (1994). The Sipuncula: Their systematics, biology, and evolution. Cornell University Press.

de León-González, J. A., Bastida Zavala, J. R., Carrera Parra, L. F., García Garza, M. E., Salazar-Vallejo, S. I., Solís-Weiss, V., & Tovar-Hernández, M. A. (2021). Anélidos marinos de México y América tropical. Universidad Autónoma de Nuevo León.

Diez, M. E., Díaz-Díaz, O., Delgado-Bas, V. A., Martin, D., & Cremonte, F. (2020). ¿Cuánto sabemos sobre poliquetos simbióticos en Sudamérica? En O. Díaz-Díaz, & N. Rozbaczylo (Eds.), Poliquetos bentónicos en Chile, Vol. III, Palpata: Canalipalpata (Ampharetidae-Trichobranchidae) (pp. 508-548). Faunamar LDTA.

Giangrande, A. (1988). Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): A structural analysis. Journal of Experimental Marine Biology and Ecology, 120(3), 263–276.

Guiry, M. D., & Guiry, G. M. (2021). Listing the World’s Algae. AlgaeBase. http://www.algaebase.org.

Hamdy, R., Khalil, A. E. G. N., Atta, M. M., & Ibrahim, H. G. (2018). Diversity and Distribution of polychaetes associated with macroalgae along the Alexandria Coast, Egypt. Journal of King Abdulaziz University Marine Science, 28, 67–79.

Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018). Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biology Letters, 14(6), 20180236.

Littler, M. M., & Littler, D. S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: Field and laboratory tests of a functional form model. The American Naturalist, 116(1), 25–44.

López-Sánchez, C. M. (2009). Macrofauna vagil asociada a Sargassum spp., su abundancia y diversidad de marzo-julio de 2007 en el área del Caribe colombiano [Tesis de pregrado, Universidad Jorge Tadeo Lozano]. Fundación Universitaria de Bogotá Jorge Tadeo Lozano. https://expeditiorepositorio.utadeo.edu.co/handle/20.500.12010/1227

Martín, D. (1986). Anélidos poliquetos y moluscos asociados a algas calcáreas. Miscel·lània Zoològica, 11, 61–75.

Mateo-Ramírez, Á., Máñez-Crespo, J., Royo, L., Tuya, F., Castejón-Silvo, I., Hernan, G., Pereda-Briones, L., & Tomas, F. (2022). A tropical macroalga (Halimeda incrassata) enhances diversity and abundance of epifaunal assemblages in Mediterranean seagrass meadows. Frontiers in Marine Science, 9, 886009.

Naim, O. (1988). Distributional patterns of mobile fauna associated with Halimeda on the Tiahura coral-reef complex (Moorea, French Polynesia). Coral Reefs, 6(3-4), 237–250.

Portal Único del Estado Colombiano. (2016). Expedición Cayo Serrana. Minciencias. https://minciencias.gov.co/colombia-bio/expedicion-cayo-serrana

Quan-Young, L. I. (2022): Seaflower ll: Cayo Serrana-Colecciones biológicas de la universidad CES-Proyecto Colombia BIO. v2.4. [Conjunto de datos]. Universidad CES. https://doi.org/10.15472/ghhocc

Quirós-Rodríguez, J., Dueñas-Ramírez, P., & Campos, N. (2013). Poliquetos (Annelida: Polychaeta) asociados a algas rojas intermareales de Córdoba, Caribe Colombiano. Revista de Biología Marina y Oceanografía, 48, 87–98.

Raven, J. A., & Hurd, C. L. (2012). Ecophysiology of photosynthesis in macroalgae. Photosynthesis research, 113, 105–125.

R Core Team. (2023). R: A language and environment for statistical computing (version 4.3.1) [Software]. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rossbach, F., Casoli, E., Beck, M., & Wild, C. (2021). Mediterranean red macro algae mats as habitat for high abundances of Serpulid Polychaetes. Diversity, 13, 265. https://doi.org/10.3390/d13060265

Sánchez-Molina, I., González-Ceballos, J., Zetina-Moguel, C., & Casanova-Cetz, R. (2007). Análisis de la biodiversidad de algas marinas situadas entre Uaymitún y Chuburná, Yucatán. Ingeniería, 11(1), 43–51.

Sarda, R. (1991). Polychaete communities related to plant covering in the médiolittoral and infralittoral zones of the Balearic Islands (Western Mediterranean). Marine Ecology, 12(4), 341–360.

Steneck, R. S., & Dethier, M. N. (1994). A functional group approach to the structure of algal-dominated communities. Oikos, 69(3), 476–498.

Torres, A. C., Veiga, P., Rubal, M., & Sousa-Pinto, I. (2015). The role of annual macroalgal morphology in driving its epifaunal assemblages. Journal of Experimental Marine Biology and Ecology, 464, 96–106.

Vélez-Rubio, G. M., González-Etchebehere, L., Scarabino, F., Trinchin, R., Manta, G., Laporta, M., Zabaleta, M., Vidal, V., de Lein-Mackey, A., & Kruk, C. (2021). Macroalgae morpho-functional groups in Southern marine ecosystems: rocky intertidal in the Southwestern Atlantic (33°-35° S). Marine Biology, 168(10), 153.

Villouta, E., & Santelices, B. (1984). Estructura de la comunidad submareal de Lessonia (Phaeophyta, Laminariales) en Chile norte y central. Revista Chilena de Historia Natural, 57, 111–122.

Ware, C., Dijkstra, J., Mello, K., Stevens, A., O’Brien, B., & Ikedo, W. (2019). A novel three-dimensional analysis of functional architecture that describes the properties of macroalgae as a refuge. Marine Ecology Progress Series, 608, 93–103.

Włodarska-Kowalczuk, M., Kukliński, P., Ronowicz, M., Legeżyńska, J., & Gromisz, S. (2009). Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund. Svalbard). Polar Biology, 32, 897–905.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista de Biología Tropical

Downloads

Download data is not yet available.