La Influencia de las variables ambientales multiescala sobre la diversidad beta de la ictiofauna de sistemas lóticos andinos
PDF
HTML
EPUB

Archivos suplementarios

PDF-suppl1
DOC-suppl1

Palabras clave

physicochemical characteristics; land uses; geomorphological variables; landscape limnology; Orinoco River Basin; Meta River; Colombia características fisicoquímicas; usos del suelo, variables geomorfológicas; limnología del paisaje; cuenca del río Orinoco; río Meta; Colombia

Cómo citar

Becerra Infante, D. A., Moreno Mancilla, O. F., Herrera Martínez, Y., & Roa Fuentes, C. A. (2025). La Influencia de las variables ambientales multiescala sobre la diversidad beta de la ictiofauna de sistemas lóticos andinos. Revista De Biología Tropical, 73(1), e61790. https://doi.org/10.15517/rev.biol.trop.v73i1.61790

Resumen

Introducción: Los ecosistemas de agua dulce son unos de los más amenazados a nivel global, incluyendo su ictiofauna. Para comprender los factores que afectan la composición y distribución de las comunidades de peces en los ríos, es importante incluir diferentes escalas de evaluación. En el río Garagoa convergen gradientes de origen natural y antrópico, condición ideal para el estudio del impacto de variables de múltiples escalas sobre la ictiofauna de agua dulce. Objetivo: evaluar la influencia de variables a escala local (oxígeno disuelto, pH, conductividad, temperatura, dureza, morfometría del canal, velocidad del agua, caudal y el índice de calidad de la vegetación de ribera QBR-And) y de paisaje (usos del suelo, características geomorfológicas y bioclimáticas) sobre las comunidades de peces de la cuenca del río Garagoa, a través del análisis de la diversidad beta particionada en los fenómenos de remplazamiento y anidamiento. Métodos: el muestreo se realizó en 36 transectos de 100 m, entre febrero y julio de 2021, en cada uno se realizó la recolecta utilizando electropesca y redes de arrastre y se registraron características fisicoquímicas y morfológicas del tramo. Utilizando información secundaria se obtuvo información de usos del suelo, características geomorfológicas y bioclimáticas. Se calculó la diversidad beta y se analizó la influencia de las variables locales y de paisaje sobre este componente, utilizando Análisis de Componentes Principales PCA y Análisis de Redundancia Basados en Distancias dbRDA. Resultados: Se registraron 22 especies de 10 familias y cinco órdenes. La disimilitud en la composición de especies fue alta (93 %), explicada en un 81 % por el reemplazamiento de especies. Estos fenómenos se relacionaron con variables locales, usos del suelo, características geomorfológicas y bioclimáticas. Conclusiones: La composición de especies en la cuenca del río Garagoa se encuentra distribuida según el gradiente de elevación y se ve afectada por un conjunto de variables a escala local y de paisaje que incluyen características naturales y condiciones generadas por actividades humanas, las más relevantes son las características fisicoquímicas del agua, morfología del canal, calidad de la vegetación de la ribera, características del relieve, así como, la distribución de áreas con coberturas naturales y áreas intervenidas por procesos agrícolas, ganaderos, mineros o urbanos.

https://doi.org/10.15517/rev.biol.trop..v73i1.61790
PDF
HTML
EPUB

Citas

Acosta, R., Ríos, B., Rieradevall, M., & Prat, N. (2009). Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnética, 28(1), 35–64.

Alaska Satellite Facility. (2024). ALOS PALSAR DEM [Datos de satélite PALSAR]. Alaska Satellite Facility. https://asf.alaska.edu/about-asf/

Alexiades, A. V., González-Gamboa, I., & Herrera-Martínez, Y. (2022). Onchorynchus mykiss alter nutrient dynamics in high-altitude headwater streams in Boyacá, Colombia through displacement of the native fish community. Environmental Challenges, 9, 100628. https://doi.org/10.1016/j.envc.2022.100628

Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

Anbumozhi, V., Radhakrishnan, J., & Yamaji, E. (2005). Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering, 24(5), 517–523. https://doi.org/10.1016/j.ecoleng.2004.01.007

Anderson, E. P., & Maldonado-Ocampo, J. A. (2011). A regional perspective on the diversity and conservation of tropical Andean fishes. Conservation Biology, 25(1), 30–39. https://doi.org/10.1111/j.1523-1739.2010.01568.x

Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E. B., Muller-Landau, H. C., Wright, S. J., Abu-Salim, K., Almeyda-Zambrano, A. M., Alonso, A., Baltzer, J. L., Basset, Y., Bourg, N. A., Broadbent, E. N., Brockelman, W. Y., Bunyavejchewin, S., Burslem, D. F. R. P., Butt, N., Cao, M., Cardenas, D., … Zimmerman, J. (2015). CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21(2), 528–549. https://doi.org/10.1111/gcb.12712

Azevedo-Santos, V. M., Arcifa, M. S., Brito, M. F. G., Agostinho, A. A., Hughes, R. M., Vitule, J. R. S., Simberloff, D., Olden, J. D., & Pelicice, F. M. (2021). Negative impacts of mining on Neotropical freshwater fishes. Neotropical Ichthyology, 19(3), e210001. https://doi.org/10.1590/1982-0224-2021-0001

Barrios-Alonso, L. M., Becerra-Infante, D. A., Galán-Echeverri, A. F., Herrera-Martínez, Y., & Roa-Fuentes, C. A. (2025). Peces del río Garagoa, cuenca alta del Orinoco, Boyacá, Colombia: Una clave taxonómica para su identificación. Actualidades Biológicas, 47(122), e4701. https://doi.org/10.17533/udea.acbi/v47n122a01

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

Baselga, A., Orme, D., Villeger, S., Bortoli, J. D., Leprieur, F., Logez, M., Martinez-Santalla, S., Martin-Devasa, R., Gomez-Rodriguez, C., & Crujeiras, R. M. (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package (Version 1.6.) [Software]. CRAN. https://doi.org/10.32614/CRAN.package.betapart

Becerra-Infante, D. A., Pedraza-Fonseca, P. V., & Roa-Fuentes, C. A. (2024). Briófitos reófilos del río Garagoa, parte alta de la cuenca del río Orinoco, departamentos de Boyacá y Cundinamarca, Colombia (Version 1.3) [Conjunto de datos]. Universidad Pedagógica y Tecnológica de Colombia. https://doi.org/10.15472/sfyu2f

Bogardi, J. J., Leentvaar, J., & Sebesvári, Z. (2020). Biologia futura: Integrating freshwater ecosystem health in water resources management. Biologia Futura, 71(4), 337–358. https://doi.org/10.1007/s42977-020-00031-7

Carvajal-Quintero, J. D., Escobar, F., Alvarado, F., Villa-Navarro, F. A., Jaramillo-Villa, Ú., & Maldonado-Ocampo, J. A. (2015). Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5(13), 2608–2620. https://doi.org/10.1002/ece3.1539

Carvalho, R. A., Teresa, F. B., & Tejerina-Garro, F. L. (2021). The effect of riverine networks on fish β-diversity patterns in a Neotropical system. Hydrobiologia, 848(2), 515–529. https://doi.org/10.1007/s10750-020-04459-9

Coombes, K. R., & Wang, M. (2022). PCDimension: Finding the number of significant principal components. R package (Version 1.1.1.3) [Software]. CRAN. https://doi.org/10.32614/CRAN.package.PCDimension

Corpochivor. (2018). Actualización plan de ordenación y manejo de la cuenca hidrográfica del río Garagoa (CÓDIGO 3507-SZH). POMCARG.

Cortés-Hernández, M. Á., Contento, L. Y. S., Baquero, E. A., & Lasso, L. F. C. (2023). Fish diversity of a tributary of the Meta River, in the flat highlands of the Colombian Orinoquia. Acta Zoológica Lilloana, 67(2), 449–471. https://doi.org/10.30550/j.azl/1837

Cunico, A. M., Ferreira, E. A., Agostinho, A. A., Beaumord, A. C., & Fernandes, R. (2012). The effects of local and regional environmental factors on the structure of fish assemblages in the Pirapó Basin, Southern Brazil. Landscape and Urban Planning, 105(3), 336–344. https://doi.org/10.1016/j.landurbplan.2012.01.002

Dala-Corte, R. B., Sgarbi, L. F., Becker, F. G., & Melo, A. S. (2019). Beta diversity of stream fish communities along anthropogenic environmental gradients at multiple spatial scales. Environmental Monitoring and Assessment, 191(5), 288. https://doi.org/10.1007/s10661-019-7448-6

Dauwalter, D. C., Splinter, D. K., Fisher, W. L., & Marston, R. A. (2008). Biogeography, ecoregions, and geomorphology affect fish species composition in streams of eastern Oklahoma, USA. Environmental Biology of Fishes, 82(3), 237–249. https://doi.org/10.1007/s10641-007-9277-7

Diamond, J. M., & Serveiss, V. B. (2001). Identifying sources of stress to native aquatic fauna using a watershed ecological risk assessment framework. Environmental Science & Technology, 35(24), 4711–4718. https://doi.org/10.1021/es0015803

Diaz-Rojas, C. A., Pedroza-Ramos, A. X., Barrera-Herrera, J. A., & Roa-Fuentes, C. A. (2023). Influence of local and landscape environmental factors on alpha and beta diversity of macroinvertebrates in Andean rivers. Journal of Mountain Science, 20(9), 2487–2501. https://doi.org/10.1007/s11629-022-7867-7

Dudgeon, D. (2019). Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology, 29(19), R960–R967. https://doi.org/10.1016/j.cub.2019.08.002

Elosegi, A., Díez, J., & Mutz, M. (2010). Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657(1), 199–215. https://doi.org/10.1007/s10750-009-0083-4

Erős, T., O’Hanley, J., & Czeglédi, I. (2018). A unified model for optimizing riverscape conservation. Journal of Applied Ecology, 55(4), 1871–1883. https://doi.org/10.1111/1365-2664.13142

Etter, A., & van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean Region. AMBIO: A Journal of the Human Environment, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432

European Inland Fisheries Advisory Commission. (1969). Water quality criteria for European freshwater fish-extreme pH values and inland fisheries. Water Research, 3(8), 593–611. https://doi.org/10.1016/0043-1354(69)90048-7

Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes: A continuous view of the river is needed to understand how processes interacting among scales set the context for stream fishes and their habitat. BioScience, 52(6), 483–498. https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Freda, J., & Mcdonald, D. G. (1988). Physiological correlates of interspecific variation in acid tolerance in fish. Journal of Experimental Biology, 136(1), 243–258. https://doi.org/10.1242/jeb.136.1.243

Heino, J., & Grönroos, M. (2017). Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia, 183(1), 151–160. https://doi.org/10.1007/s00442-016-3754-7

Herrera-Pérez, J., Parra, J. L., Restrepo-Santamaría, D., & Jiménez-Segura, L. (2019). The influence of abiotic environment and connectivity on the distribution of diversity in an Andean fish fluvial network. Frontiers in Environmental Science, 7, 9. https://doi.org/10.3389/fenvs.2019.00009

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

Hynes, H. B. N. (1975). The stream and its valley: With 4 figures and 2 tables in the text. SIL Proceedings, 1922-2010, 19(1), 1–15. https://doi.org/10.1080/03680770.1974.11896033

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Germany. https://doi.org/10.5281/zenodo.3831673

Jackson, D. A., Peres-Neto, P. R., & Olden, J. D. (2001). What controls who is where in freshwater fish communities-the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157–170. https://doi.org/10.1139/f00-239

Jaramillo-Villa, U., Maldonado-Ocampo, J., & Escobar, F. (2010). Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76(10), 2401–2417. https://doi.org/10.1111/j.1095-8649.2010.02629.x

Konstantinov, A. S., Kuznetsov, V. A., & Kostoeva, T. N. (2008). The systematics of fish metabolic response to changes in hydrogen ion concentrations in the pH gradient field. Inland Water Biology, 1(3), 274–281. https://doi.org/10.1134/S1995082908030115

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: A package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01

Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

Legendre, P., & De Cáceres, M. (2013). Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16(8), 951–963. https://doi.org/10.1111/ele.12141

Leprieur, F., Tedesco, P. A., Hugueny, B., Beauchard, O., Dürr, H. H., Brosse, S., & Oberdorff, T. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14(4), 325–334. https://doi.org/10.1111/j.1461-0248.2011.01589.x

López-Delgado, E. O., Winemiller, K. O., & Villa-Navarro, F. A. (2020). Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology, 101(2), e02940. https://doi.org/10.1002/ecy.2940

López‐Delgado, E. O., Winemiller, K. O., & Villa‐Navarro, F. A. (2019). Do metacommunity theories explain spatial variation in fish assemblage structure in a pristine tropical river? Freshwater Biology, 64(2), 367–379. https://doi.org/10.1111/fwb.13229

Machado de Oliveira, F. J., Bini, L. M., de Lima, L. B., & Lima-Junior, D. P. (2023). Environmental and spatial factors are poor predictors of fish beta diversity in Cerrado streams. Oecologia Australis, 27(4), 389–402. https://doi.org/10.4257/oeco.2023.2704.04

Maldonado-Ocampo, J. A., Ortega-Lara, A., Usma-Oviedo, J. S., Galvis-Vergara, G., Villa-Navarro, F. A., Vásquez-Gamboa, L., Prada-Pedreros, S., & Ardila Rodríguez, C. (2005). Peces de los Andes de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Miranda, R., Ríos-Touma, B., Falconí-López, A., Pino-delCarpio, A., Gaspar, S., Ortega, H., Peláez-Rodríguez, M., Araujo-Flores, J. M., & Tobes, I. (2021). Evaluating the influence of environmental variables on fish assemblages along Tropical Andes: Considerations from ecology to conservation. Hydrobiologia, 849(20), 4569–4585. https://doi.org/10.1007/s10750-021-04726-3

Motta-Díaz, A. J., & Vimos-Lojano, D. J. (2020). Influencia de la variación temporal de los parámetros hidráulicos en la estructura y la función de la comunidad de macroinvertebrados en un río andino. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 606–621. https://doi.org/10.18257/raccefyn.1023

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M. D., Durand, S., … Borman, T. (2022). vegan: Community ecology package. R package (Version 2.6-10) [Software]. https://CRAN.R-project.org/package=vegan

Pelicice, F. M., Bialetzki, A., Camelier, P., Carvalho, F. R., García-Berthou, E., Pompeu, P. S., Teixeira-de Mello, F. T., & Pavanelli, C. S. (2021). Human impacts and the loss of Neotropical freshwater fish diversity. Neotropical Ichthyology, 19(3), e210134. https://doi.org/10.1590/1982-0224-2021-0134

Pinto, B., Araujo, F., & Hughes, R. (2006). Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river. Hydrobiologia, 556(1), 69–83. https://doi.org/10.1007/s10750-005-9009-y

Pusey, B. J., & Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: A review. Marine and Freshwater Research, 54(1), 1–16. https://doi.org/10.1071/mf02041

R Core Team. (2023). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Reinhardt, L., Jerolmack, D., Cardinale, B. J., Vanacker, V., & Wright, J. (2010). Dynamic interactions of life and its landscape: Feedbacks at the interface of geomorphology and ecology. Earth Surface Processes and Landforms, 35(1), 78–101. https://doi.org/10.1002/esp.1912

Rinne, J. N., & Miller, D. (2006). Hydrology, geomorphology and management: Implications for sustainability of native southwestern fishes. Reviews in Fisheries Science, 14(1–2), 91–110. https://doi.org/10.1080/10641260500341379

Roa-Fuentes, C. A., & Casatti, L. (2017). Influence of environmental features at multiple scales and spatial structure on stream fish communities in a tropical agricultural region. Journal of Freshwater Ecology, 32(1), 281–295. https://doi.org/10.1080/02705060.2017.1287129

Roa-Fuentes, C. A., Heino, J., Cianciaruso, M. V., Ferraz, S., Zeni, J. O., & Casatti, L. (2019). Taxonomic, functional, and phylogenetic β-diversity patterns of stream fish assemblages in tropical agroecosystems. Freshwater Biology, 64(3), 447–460. https://doi.org/10.1111/FWB.13233

RStudio team. (2023). RStudio: Integrated development environment for R [Software]. Posit Software, PBC. http://www.posit.co/

Sály, P., Takács, P., Kiss, I., Biró, P., & Erős, T. (2011). The relative influence of spatial context and catchment‐ and site‐scale environmental factors on stream fish assemblages in a human‐modified landscape. Ecology of Freshwater Fish, 20(2), 251–262. https://doi.org/10.1111/J.1600-0633.2011.00490.X

Shields, R., Pyron, M., Arsenault, E. R., Thorp, J. H., Minder, M., Artz, C., Costello, J., Otgonganbat, A., Mendsaikhan, B., Altangerel, S., & Maasri, A. (2021). Geomorphology variables predict fish assemblages for forested and endorheic rivers of two continents. Ecology and Evolution, 11(23), 16745–16762. https://doi.org/10.1002/ece3.8300

Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344–358. https://doi.org/10.1899/08-171.1

Tesfay-Gebrekiros, S. (2016). Factors affecting stream fish community composition and habitat suitability. Journal of Aquaculture & Marine Biology, 4(2), 58–70. https://doi.org/10.15406/jamb.2016.04.00076

Urbano-Bonilla, A., Agudelo-Zamora, H., López-Pinto, Y., Andrade-López, J, Miranda-Cortés, L., Ávila-Avilán, R. C., & Rojas-Bolaño, C. A. (2021). Peces del suroriente de Boyacá: Prioridades de conservación para Corpochivor. Corporación Autónoma Regional de Chivor

Valencia-Rodríguez, D., Herrera-Pérez, J., Botero-Escalante, D., García-Melo, L., Arenas-Serna, D., Álvarez-Bustamante, F., Parra-R, E., & Jiménez-Segura, L. (2023). Distribution of diversity of fishes in an Andean fluvial network. Revista de Biología Tropical, 71(1), e52183. https://doi.org/10.15517/rev.biol.trop..v71i1.52183

van der Sleen, P., & Albert, J. S. (Eds.). (2017). Field guide to the fishes of the Amazon, Orinoco, and Guianas. Princeton University Press.

Walters, D. M., Leigh, D. S., Freeman, M. C., Freeman, B. J., & Pringle, C. M. (2003). Geomorphology and fish assemblages in a Piedmont river basin, USA. Freshwater Biology, 48(11), 1950–1970. https://doi.org/10.1046/j.1365-2427.2003.01137.x

Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279–338. https://doi.org/10.2307/1943563

Winemiller, K. O., Agostinho, A. A., & Caramaschi, É. P. (2008). Fish ecology in tropical streams. In D. Dudgeon (Ed.), Tropical stream ecology (pp. 107–146). Academic Press. https://doi.org/10.1016/B978-012088449-0.50007-8

Wright, J. P., & Flecker, A. S. (2004). Deforesting the riverscape: The effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation, 120(3), 439–447. https://doi.org/10.1016/j.biocon.2004.02.022

Yang, Z., Liu, X., Zhou, M., Ai, D., Wang, G., Wang, Y., Chu, C., & Lundholm, J. T. (2015). The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Scientific Reports, 5(1), 15723. https://doi.org/10.1038/srep15723

Zeni, J. O., Pérez-Mayorga, M. A., Roa-Fuentes, C. A., Brejão, G. L., & Casatti, L. (2019). How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(8), 1238–1252. https://doi.org/10.1002/AQC.3128

Zhang, Y., Zhao, Q., & Ding, S. (2019). The responses of stream fish to the gradient of conductivity: A case study from the Taizi River, China. Aquatic Ecosystem Health & Management, 22(2), 171–182. https://doi.org/10.1080/14634988.2019.1622994

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2025 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.