Isolation of rumen cellulolytic bacterial consortia and their in vitro simulation of rumen microbiota manipulation

Authors

DOI:

https://doi.org/10.15517/am.2025.62973

Keywords:

biogas, degradation, enzyme activity, gas production, rumen

Abstract

Introduction. Isolation and manipulation of rumen cellulolytic bacterial consortia (CBC) improve fiber degradation under in vitro conditions. Objective. To obtain CBC from different substrates and to simulate the manipulation of ruminal microbiota (RM) by means of an in vitro gas production test. Objective. Obtain CBC from different substrates and simulate the manipulation of ruminal microbiota (RM) by in vitro gas production test. Materials and methods. The experiment was conducted from January to June 2024 at the Autonomous University of Guerrero, Cuajinicuilapa, Guerrero, Mexico. CBC were obtained from rumen fluid in selective culture media using ground sawdust (CBCa), Mulatto grass stalk (CBCt) and ground Mulatto grass (CBCm) as substrate. Two in vitro assays were performed: a) Evaluation of obtained CBCs and, b) Addition of CBCs to MR. In both, partial biogas production was measured from 0 to 24 h, 24 to 48 h and 48 to 72 h, as well as cumulative production. Dry matter degradation (DMD) and cellulolytic enzyme activity (CEA) were measured at 24, 48 and 72 h. The variables were analyzed in a design based on the design of the CBCs. The variables were analyzed in a completely randomized design. Results. In trial 1, CBCa produced higher cumulative biogas (p<0.05); DMD at 24 and 72 h was higher for CBCa (p<0.05); DMD at 48 h and AEC showed no difference between CBCs (p>0.05). In trial 2 they showed that the addition of CBCs to the RM did not modify the partial biogas production, the DMS at 24, 48 and 72 h, nor the CEA at 24 and 48 h (p>0.05); but the addition of CBCm increased 13.8 and 36.3 % the cumulative biogas production and CEA at 72 h. Conclusion. The CBCs obtained from the mulatto grass allow manipulation of the RM after in vitro simulation under the specific conditions of the present study.

Downloads

Download data is not yet available.

References

Amanzougarene, Z., & Fondevila, M. (2020). Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10(10), Article 10. https://doi.org/10.3390/ani10101935

Association of Analytical Chemists. (2016). Official methods of analysis (20th ed.). AOAC International

Azhar, S., Aihetasham, A., Chaudhary, A., Hussain, Z., Abdul Rehman, R., Abbas, G., Alharbi, S. A., Ansari, M. J., & Qamer, S. (2024). Cellulolytic and ethanologenic evaluation of heterotermes indicola’s gut-associated bacterial isolates. ACS Omega, 9(10), 12084-12100. https://doi.org/10.1021/acsomega.3c10030

Basak, B., Kumar, R., Tanpure, R. S., Mishra, A., Tripathy, S. K., Chakrabortty, S., Roh, H.-S., Yadav, K. K., Chung, W., & Jeon, B.-H. (2025). Roles of engineered lignocellulolytic microbiota in bioaugmenting lignocellulose biomethanation. Renewable and Sustainable Energy Reviews, 207, Article 114913. https://doi.org/10.1016/j.rser.2024.114913

Carhuapoma-Delacruz, V., Auqui-Acharte, G. S., Valencia-Mamani, N., Gonzales-Huamán, T. J., Guillen-Domínguez, H. M., & Esparza, M. (2021). Bacterias fibrolíticas aisladas de rumen de alpaca, ovino y vacuno con capacidad biodegradadora de celulosa. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 32, 1-7. https://doi.org/10.52973/rcfcv-e32094

Contextoganadero. (2022). ¿Ha escuchado hablar de la raza bovina Suiz-Bú y su importancia en zonas tropicales?. https://www.contextoganadero.com/ganaderia-sostenible/ha-escuchado-hablar-de-la-raza-bovina-suiz-bu-y-su-importancia-en-zonas (consultado 20 nov. 2024).

Culp, E. J., & Goodman, A. L. (2023). Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host & Microbe, 31(4), 485-499. https://doi.org/10.1016/j.chom.2023.03.016

Darwin, B. A., & Cord-Ruwisch, R. (2018). In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis. Annals of Microbiology, 68(1), Article 1. https://doi.org/10.1007/s13213-017-1307-x

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2020). Infostat (Versión 2020) [software]. Centro de Transferencia InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=15

Duncker, K. E., Holmes, Z. A., & You, L. (2021). Engineered microbial consortia: Strategies and applications. Microbial Cell Factories, 20(1), Article 211. https://doi.org/10.1186/s12934-021-01699-9

Gharechahi, J., Vahidi, M. F., Sharifi, G., Ariaeenejad, S., Ding, X.-Z., Han, J.-L., & Salekdeh, G. H. (2023). Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. Environmental Research, 229, Article 115925. https://doi.org/10.1016/j.envres.2023.115925

Hernández-Morales, J., Sánchez-Santillán, P., Torres-Salado, N., Herrera-Pérez, J., Rojas-García, A. R., Reyes-Vázquez, I., & Mendoza-Núñez, M. A. (2018). Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Revista Mexicana de Ciencias Pecuarias, 9(1), 105-120. https://doi.org/10.22319/rmcp.v9i1.4332

Hernández-Sánchez, D., Herrera-Pérez, J., López Garrido, S. J., Torres-Salado, N., & Sánchez-Santillán, P. (2022). Producción de biogás y características fermentativas in vitro de consorcios bacterianos celulolíticos ruminales obtenidos de diferentes fibras. Tropical and Subtropical Agroecosystems, 25(3), Article 107. https://doi.org/10.56369/tsaes.4127

Isnawati, I., Lisdiana, L., Asri, M. T., & Trimulyono, G. (2024). Biodiversity of cellulolytic bacteria isolated from fermetodege for ruminants. BIOTROPIA, 31(2), Article 2. https://doi.org/10.11598/btb.2024.31.2.1904

Kamusoko, R., & Mukumba, P. (2024). Effect of biological pre-treatment with cellulolytic bacteria consortium on biogas production from crop residues. International Journal of Current Microbiology and Applied Sciences, 12(8), 68-73. https://doi.org/10.20546/ijcmas.2023.1208.008.

Liang, J., Zhang, R., Chang, J., Chen, L., Nabi, M., Zhang, H., Zhang, G., & Zhang, P. (2024). Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion—A comprehensive review. Biotechnology Advances, 71, Article 108308. https://doi.org/10.1016/j.biotechadv.2024.108308

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030

Palmonari, A., Federiconi, A., & Formigoni, A. (2024). Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. animal, 18(10), Article 101319. https://doi.org/10.1016/j.animal.2024.101319

Sánchez-Santillán, P., Herrera-Pérez, J., Torres-Salado, N., Almaraz-Buendía, I., Reyes-Vázquez, I., Rojas-García, A. R., Gómez-Trinidad, M., Contreras-Ramírez, E. O., Maldonado-Peralta, M. Á., & Magadan-Olmedo, F. (2020). Chemical composition, and in vitro fermentation of ripe mango silage with molasses. Agroforestry Systems, 94(4), 1511-1519. https://doi.org/10.1007/s10457-019-00442-z

Sánchez-Santillán, P., Meneses-Mayo, M., Miranda-Romero, L., Santellano-Estrada, E., & Alarcón-Zúñiga, B. (2015). Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius—EUM1 in bagasse cane. Revista MVZ Córdoba, 20(supl), 4907-4916. https://doi.org/10.21897/rmvz.6

Srivastava, S., & Dafale, N. A. (2024). Tailored microbial consortium producing hydrolytic enzyme cocktail for maximum saccharification of wheat straw. Bioresource Technology, 399, Article 130560. https://doi.org/10.1016/j.biortech.2024.130560

Takors, R., Kopf, M., Mampel, J., Bluemke, W., Blombach, B., Eikmanns, B., Bengelsdorf, F. R., Weuster‐Botz, D., & Dürre, P. (2018). Using gas mixtures of CO, CO2 and H2 as microbial substrates: The do’s and don’ts of successful technology transfer from laboratory to production scale. Microbial Biotechnology, 11(4), 606-625. https://doi.org/10.1111/1751-7915.13270

Texta, J. N., Sánchez-Santillán, P., Hernández, D. S., Torres, N. S., Crosby, M. G., Rojas-García, R. A., Herrera, J. P., & Maldonado-Peralta, M. (2019). Use of disaccharides and activated carbon to preserve cellulolytic ruminal bacterial consortiums lyophilized. Revista MVZ Córdoba, 24(3), 7305-7313. https://doi.org/10.21897/rmvz.1412

Torres-Salado, N., Sánchez-Santillán, P., Rojas-García, R. A., Almaraz-Buendía, I., Herrera-Pérez, J., Reyes-Vázquez, I., & Mayren-Mendoza, F. J. (2019). In vitro gas production and fermentative characteristics of ruminal cellulolytic bacterial consortia of water buffalo (Bubalus bubalis) and Suiz-bu cow. Agrociencia, 53(2), 145-159.

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Zhang, S., Merino, N., Okamoto, A., & Gedalanga, P. (2018). Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microbial Biotechnology, 11(5), 833-847. https://doi.org/10.1111/1751-7915.13300

Published

2025-06-04

How to Cite

Sánchez-Santillán, P., Salas-Cirilo, V., Torres-Salado, N., & Herrera-Pérez, J. (2025). Isolation of rumen cellulolytic bacterial consortia and their in vitro simulation of rumen microbiota manipulation. Agronomía Mesoamericana, 62973. https://doi.org/10.15517/am.2025.62973

Issue

Section

Articles